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Chapter 5. Series
Section 5.65. Integration and Differentiation of Power Series—Proofs of

Theorems
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Theorem 5.65.1

Theorem 5.65.1

Theorem 5.65.1. Let C denote any contour interior to the circle of

convergence of the power series S(z) =
∞∑

n=0

an(z − z0)
n and let g(z) be

any function that is continuous on C . The series formed by multiplying
each term of the power series by g(z) can be integrated term-by-term over
C ; that is∫

C
g(z)S(z) dz =

∫
C

g(z)
∞∑

n=0

an(z − z0)
n dz =

∞∑
n=0

an

∫
C

g(z)(z − z0)
n dz .

Proof. Notice that g(z) is continuous on C by hypothesis and S(z) is
continuous on C by Theorem 5.64.1, so

∫
C g(z)S(z) dz is defined. With

ρN(z) as the remainder S(z)− SN(z) (where SN(z) is the Nth partial
sum), by Note 4.40.A, . . .
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Theorem 5.65.1

Theorem 5.65.1 (continued 1)

Proof (continued).∫
C

g(z)S(z) dz =

∫
C

g(z)(SN(z) + ρN(z)) dz

=

∫
C

(
g(z)

N−1∑
n=0

an(z − z0)
n + g(z)ρN(z)

)
dz

=
N−1∑
n=1

an

∫
C

g(z)(z − z0)
n dz +

∫
C

g(z)ρN(z) dz . (∗)

Now |g(z)| has a maximum M on C by Theorem 2.18.3. Let L denote the
length of C . Since power series ρN(z) is uniformly convergent on C by
Theorem 5.64.2 so for any ε > 0 there exists Nε ∈ N such that
|ρN(z)| < ε for all N > Nε and for all z ∈ C .
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Theorem 5.65.1

Theorem 5.65.1 (continued 2)

Proof (continued). So (since Nε is independent of z ∈ C ) we have∣∣∣∣∫
C

g(z)ρN(z) dz

∣∣∣∣ < MεL whenver N > Nε

by Theorem 4.43.A. Since M and L are constant (because C is given) then

this last condition implies that lim
N→∞

∫
C

g(z)ρN(z) dz = 0 by the definition

of limit. Taking a limit as N →∞ for both sides of (∗) we get

lim
N→∞

(∫
C

g(z)S(z) dz

)

= lim
N→∞

(
N−1∑
n=0

an

∫
C

g(z)(z − z0)
n dz +

∫
C

g(z)ρN(z) dz

)
or . . .
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Theorem 5.65.1

Theorem 5.65.1 (continued 3)

Theorem 5.65.1. Let C denote any contour interior to the circle of

convergence of the power series S(z) =
∞∑

n=0

an(z − z0)
n and let g(z) be

any function that is continuous on C . The series formed by multiplying
each term of the power series by g(z) can be integrated term-by-term over
C ; that is∫

C
g(z)S(z) dz =

∫
C

g(z)
∞∑

n=0

an(z − z0)
n dz =

∞∑
n=0

an

∫
C

g(z)(z − z0)
n dz .

Proof (continued). . . .∫
C

g(z)S(z) dz =
∞∑

n=0

an

∫
C

g(z)(z − z0)
n dz ,

as claimed.
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Corollary 5.65.1

Corollary 5.65.1

Corollary 5.65.1. The power series S(z) =
∑∞

n=0 an(z − z0)
n is analytic

at each point z interior to the circle of convergence of the series.

Proof. Let C be any closed contour in the domain which is the interior of
the circle of convergence. With g(z) = 1 we then have∫

C
g(z)(z − z0)

n dz =

∫
C
(z − z0)

n dz = 0 for n ∈ N ∪ {0}

by Theorem 4.44.A (or Example 4.43.A).

So by Theorem 5.65.1,∫
C

g(z)S(z) dz =

∫
C

∞∑
n=0

an(z − z0)
n dz =

∞∑
n=0

an

∫
C
(z − z0)

n dz = 0.

Since C is an arbitrary closed contour in the circle of convergence of the
series, then by Morera’s Theorem (Theorem 4.52.2),
S(z) =

∑∞
n=0(z − z0)

n is analytic in the circle of convergence, as
claimed.
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Theorem 5.65.2

Theorem 5.65.2

Theorem 5.65.2. The power series S(z) =
∞∑

n=0

an(z − z0)
n can be

differentiated term-by-term in its circle of convergence. That is, at each
point z interior to the circle of convergence of that series, we have

S ′(z) =
∞∑

n=1

nan(z − z0)
n−1.

Proof. Let z be any point interior to the circle of convergence of the
series, and let C be some positively oriented simple closed contour

surrounding z and interior to the circle. Define g(s) =
1

2πi

1

(s − z)2
for

each s ∈ C . Since z 6∈ C then g is continuous on C (as is S(z)), so by
Theorem 5.65.1∫

C
g(s)S(s) ds =

∞∑
n=0

an

∫
C

g(s)(s − z0)
n ds. (∗)
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Theorem 5.65.2

Theorem 5.65.2 (continued)

Proof (continued). Since S(z) is analytic inside and on C by Corollary
5.65.1, then by Theorem 4.51.1 with n = 1 (and z0 in the theorem as z
here) we have

S ′(z) =
1

2πi

∫
C

S(s) ds

(s − z)2
=

∫
C

g(s)S(s) ds. (∗∗)

Similarly, replacing S(z) with (z − z0)
n in (∗∗) we have

d

dz
[(z − z0)

n] =
1

2πi

∫
C

(s − z0)
n ds

(s − z)2
=

∫
C

g(s)(s − z0)
n ds,

and so, combining (∗) and (∗∗), we have

d

dz

[ ∞∑
n=0

an(z − z0)
n

]
= S ′(z) =

∫
C

g(s)S(s) ds =
∞∑

n=0

an

∫
C

g(s)(s−z0)
n ds

=
∞∑

n=0

an
d

dz
[(z − z0)

n] =
∞∑

n=1

nan(z − z0)
n−1, as claimed.
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