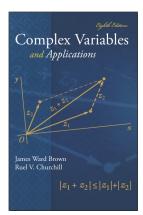
Complex Variables

Chapter 5. Series Section 5.65. Integration and Differentiation of Power Series—Proofs of Theorems



Theorem 5.65.1. Let *C* denote any contour interior to the circle of convergence of the power series $S(z) = \sum_{n=0}^{\infty} a_n(z-z_0)^n$ and let g(z) be any function that is continuous on *C*. The series formed by multiplying each term of the power series by g(z) can be integrated term-by-term over *C*; that is

$$\int_C g(z)S(z)\,dz = \int_C g(z)\sum_{n=0}^\infty a_n(z-z_0)^n\,dz = \sum_{n=0}^\infty a_n\int_C g(z)(z-z_0)^n\,dz.$$

Proof. Notice that g(z) is continuous on C by hypothesis and S(z) is continuous on C by Theorem 5.64.1, so $\int_C g(z)S(z) dz$ is defined. With $\rho_N(z)$ as the remainder $S(z) - S_N(z)$ (where $S_N(z)$ is the Nth partial sum), by Note 4.40.A, ...

Theorem 5.65.1. Let *C* denote any contour interior to the circle of convergence of the power series $S(z) = \sum_{n=0}^{\infty} a_n(z-z_0)^n$ and let g(z) be any function that is continuous on *C*. The series formed by multiplying each term of the power series by g(z) can be integrated term-by-term over *C*; that is

$$\int_C g(z)S(z)\,dz = \int_C g(z)\sum_{n=0}^\infty a_n(z-z_0)^n\,dz = \sum_{n=0}^\infty a_n\int_C g(z)(z-z_0)^n\,dz.$$

Proof. Notice that g(z) is continuous on C by hypothesis and S(z) is continuous on C by Theorem 5.64.1, so $\int_C g(z)S(z) dz$ is defined. With $\rho_N(z)$ as the remainder $S(z) - S_N(z)$ (where $S_N(z)$ is the Nth partial sum), by Note 4.40.A, ...

Theorem 5.65.1 (continued 1)

Proof (continued).

$$\begin{aligned} \int_{C} g(z)S(z) \, dz &= \int_{C} g(z)(S_{N}(z) + \rho_{N}(z)) \, dz \\ &= \int_{C} \left(g(z) \sum_{n=0}^{N-1} a_{n}(z - z_{0})^{n} + g(z)\rho_{N}(z) \right) \, dz \\ &= \sum_{n=1}^{N-1} a_{n} \int_{C} g(z)(z - z_{0})^{n} \, dz + \int_{C} g(z)\rho_{N}(z) \, dz. \end{aligned}$$

Now |g(z)| has a maximum M on C by Theorem 2.18.3. Let L denote the length of C. Since power series $\rho_N(z)$ is uniformly convergent on C by Theorem 5.64.2 so for any $\varepsilon > 0$ there exists $N_{\varepsilon} \in \mathbb{N}$ such that $|\rho_N(z)| < \varepsilon$ for all $N > N_{\varepsilon}$ and for all $z \in C$.

Theorem 5.65.1 (continued 1)

Proof (continued).

$$\begin{split} \int_{C} g(z)S(z) \, dz &= \int_{C} g(z)(S_{N}(z) + \rho_{N}(z)) \, dz \\ &= \int_{C} \left(g(z) \sum_{n=0}^{N-1} a_{n}(z-z_{0})^{n} + g(z)\rho_{N}(z) \right) \, dz \\ &= \sum_{n=1}^{N-1} a_{n} \int_{C} g(z)(z-z_{0})^{n} \, dz + \int_{C} g(z)\rho_{N}(z) \, dz. \quad (*) \end{split}$$

Now |g(z)| has a maximum M on C by Theorem 2.18.3. Let L denote the length of C. Since power series $\rho_N(z)$ is uniformly convergent on C by Theorem 5.64.2 so for any $\varepsilon > 0$ there exists $N_{\varepsilon} \in \mathbb{N}$ such that $|\rho_N(z)| < \varepsilon$ for all $N > N_{\varepsilon}$ and for all $z \in C$.

Theorem 5.65.1 (continued 2)

Proof (continued). So (since N_{ε} is independent of $z \in C$) we have

$$\left|\int_{C} g(z) \rho_{N}(z) \, dz\right| < M \varepsilon L$$
 whenver $N > N_{\varepsilon}$

by Theorem 4.43.A. Since M and L are constant (because C is given) then this last condition implies that $\lim_{N\to\infty} \int_C g(z)\rho_N(z) dz = 0$ by the definition of limit. Taking a limit as $N \to \infty$ for both sides of (*) we get

$$\lim_{N\to\infty}\left(\int_C g(z)S(z)\,dz\right)$$

$$= \lim_{N \to \infty} \left(\sum_{n=0}^{N-1} a_n \int_C g(z) (z-z_0)^n \, dz + \int_C g(z) \rho_N(z) \, dz \right)$$

or . . .

Theorem 5.65.1 (continued 2)

Proof (continued). So (since N_{ε} is independent of $z \in C$) we have

$$\left|\int_{C} g(z) \rho_{N}(z) \, dz\right| < M \varepsilon L$$
 whenver $N > N_{\varepsilon}$

by Theorem 4.43.A. Since M and L are constant (because C is given) then this last condition implies that $\lim_{N\to\infty} \int_C g(z)\rho_N(z) dz = 0$ by the definition of limit. Taking a limit as $N \to \infty$ for both sides of (*) we get

$$\lim_{N\to\infty}\left(\int_C g(z)S(z)\,dz\right)$$

$$= \lim_{N\to\infty} \left(\sum_{n=0}^{N-1} a_n \int_C g(z)(z-z_0)^n \, dz + \int_C g(z)\rho_N(z) \, dz \right)$$

or . . .

Theorem 5.65.1 (continued 3)

Theorem 5.65.1. Let *C* denote any contour interior to the circle of convergence of the power series $S(z) = \sum_{n=0}^{\infty} a_n(z-z_0)^n$ and let g(z) be any function that is continuous on *C*. The series formed by multiplying each term of the power series by g(z) can be integrated term-by-term over *C*; that is

$$\int_C g(z)S(z)\,dz = \int_C g(z)\sum_{n=0}^\infty a_n(z-z_0)^n\,dz = \sum_{n=0}^\infty a_n\int_C g(z)(z-z_0)^n\,dz.$$

Proof (continued). ...

$$\int_C g(z)S(z)\,dz = \sum_{n=0}^\infty a_n \int_C g(z)(z-z_0)^n\,dz,$$

as claimed.

Corollary 5.65.1. The power series $S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ is analytic at each point z interior to the circle of convergence of the series.

Proof. Let C be any *closed* contour in the domain which is the interior of the circle of convergence. With g(z) = 1 we then have

$$\int_{C} g(z)(z-z_{0})^{n} dz = \int_{C} (z-z_{0})^{n} dz = 0 \text{ for } n \in \mathbb{N} \cup \{0\}$$

by Theorem 4.44.A (or Example 4.43.A).

Corollary 5.65.1. The power series $S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ is analytic at each point z interior to the circle of convergence of the series.

Proof. Let C be any *closed* contour in the domain which is the interior of the circle of convergence. With g(z) = 1 we then have

$$\int_{C} g(z)(z-z_{0})^{n} dz = \int_{C} (z-z_{0})^{n} dz = 0 \text{ for } n \in \mathbb{N} \cup \{0\}$$

by Theorem 4.44.A (or Example 4.43.A). So by Theorem 5.65.1,

$$\int_C g(z)S(z)\,dz = \int_C \sum_{n=0}^\infty a_n(z-z_0)^n\,dz = \sum_{n=0}^\infty a_n \int_C (z-z_0)^n\,dz = 0.$$

Since C is an arbitrary closed contour in the circle of convergence of the series, then by Morera's Theorem (Theorem 4.52.2), $S(z) = \sum_{n=0}^{\infty} (z - z_0)^n$ is analytic in the circle of convergence, as claimed.

Corollary 5.65.1. The power series $S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ is analytic at each point z interior to the circle of convergence of the series.

Proof. Let C be any *closed* contour in the domain which is the interior of the circle of convergence. With g(z) = 1 we then have

$$\int_{C} g(z)(z-z_{0})^{n} dz = \int_{C} (z-z_{0})^{n} dz = 0 \text{ for } n \in \mathbb{N} \cup \{0\}$$

by Theorem 4.44.A (or Example 4.43.A). So by Theorem 5.65.1,

$$\int_C g(z)S(z)\,dz = \int_C \sum_{n=0}^\infty a_n(z-z_0)^n\,dz = \sum_{n=0}^\infty a_n \int_C (z-z_0)^n\,dz = 0.$$

Since C is an arbitrary closed contour in the circle of convergence of the series, then by Morera's Theorem (Theorem 4.52.2), $S(z) = \sum_{n=0}^{\infty} (z - z_0)^n$ is analytic in the circle of convergence, as claimed.

Theorem 5.65.2. The power series $S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ can be

differentiated term-by-term in its circle of convergence. That is, at each point z interior to the circle of convergence of that series, we have $S'(z) = \sum_{n=1}^{\infty} na_n(z - z_0)^{n-1}.$

Proof. Let z be any point interior to the circle of convergence of the series, and let C be some positively oriented simple closed contour surrounding z and interior to the circle. Define $g(s) = \frac{1}{2\pi i} \frac{1}{(s-z)^2}$ for each $s \in C$. Since $z \notin C$ then g is continuous on C (as is S(z)), so by Theorem 5.65.1

$$\int_C g(s)S(s)\,ds = \sum_{n=0}^\infty a_n \int_C g(s)(s-z_0)^n\,ds. \qquad (*)$$

Theorem 5.65.2. The power series $S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ can be

differentiated term-by-term in its circle of convergence. That is, at each point z interior to the circle of convergence of that series, we have $S'(z) = \sum_{n=1}^{\infty} na_n(z - z_0)^{n-1}.$

Proof. Let z be any point interior to the circle of convergence of the series, and let C be some positively oriented simple closed contour surrounding z and interior to the circle. Define $g(s) = \frac{1}{2\pi i} \frac{1}{(s-z)^2}$ for each $s \in C$. Since $z \notin C$ then g is continuous on C (as is S(z)), so by Theorem 5.65.1

$$\int_{C} g(s)S(s) \, ds = \sum_{n=0}^{\infty} a_n \int_{C} g(s)(s-z_0)^n \, ds. \qquad (*)$$

Theorem 5.65.2 (continued)

Proof (continued). Since S(z) is analytic inside and on *C* by Corollary 5.65.1, then by Theorem 4.51.1 with n = 1 (and z_0 in the theorem as *z* here) we have

$$S'(z) = \frac{1}{2\pi i} \int_C \frac{S(s) \, ds}{(s-z)^2} = \int_C g(s) S(s) \, ds. \qquad (**)$$

Similarly, replacing S(z) with $(z - z_0)^n$ in (**) we have

$$\frac{d}{dz}[(z-z_0)^n] = \frac{1}{2\pi i} \int_C \frac{(s-z_0)^n \, ds}{(s-z)^2} = \int_C g(s)(s-z_0)^n \, ds,$$

and so, combining (*) and (**), we have

$$\frac{d}{dz}\left[\sum_{n=0}^{\infty}a_n(z-z_0)^n\right] = S'(z) = \int_C g(s)S(s)\,ds = \sum_{n=0}^{\infty}a_n\int_C g(s)(s-z_0)^n\,ds$$

 $= \sum_{n=0}^{\infty} a_n \frac{d}{dz} [(z - z_0)^n] = \sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1}, \text{ as claimed.} \quad \Box$

Theorem 5.65.2 (continued)

Proof (continued). Since S(z) is analytic inside and on *C* by Corollary 5.65.1, then by Theorem 4.51.1 with n = 1 (and z_0 in the theorem as *z* here) we have

$$S'(z) = \frac{1}{2\pi i} \int_C \frac{S(s) \, ds}{(s-z)^2} = \int_C g(s) S(s) \, ds. \qquad (**)$$

Similarly, replacing S(z) with $(z - z_0)^n$ in (**) we have

$$\frac{d}{dz}[(z-z_0)^n] = \frac{1}{2\pi i} \int_C \frac{(s-z_0)^n \, ds}{(s-z)^2} = \int_C g(s)(s-z_0)^n \, ds,$$

and so, combining (*) and (**), we have

$$\frac{d}{dz}\left[\sum_{n=0}^{\infty}a_n(z-z_0)^n\right]=S'(z)=\int_C g(s)S(s)\,ds=\sum_{n=0}^{\infty}a_n\int_C g(s)(s-z_0)^n\,ds$$

$$=\sum_{n=0}^{\infty}a_n\frac{d}{dz}[(z-z_0)^n]=\sum_{n=1}^{\infty}na_n(z-z_0)^{n-1}, \text{ as claimed.} \quad \Box$$