Complex Variables

Chapter 6. Residues and Poles

Section 6.70. Cauchy's Residue Theorem—Proofs of Theorems

Table of contents

(1) Theorem 6.70.1. Cauchy's Residue Theorem

Theorem 6.70.1

Theorem 6.70.1. Cauchy's Residue Theorem.

Let C be as simple closed contour described in the positive sense. If function f is analytic inside and on C except for a finite number of singular points z_{k} for $k=1,2, \ldots, n$ inside C then

$$
\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)
$$

Proof. Since the points $z_{1}, z_{2}, \ldots, z_{n}$ are isolated then for each k with $k=1,2, \ldots, n$ there is $\varepsilon_{k}>0$ such that the closed disc $\left|z-z_{k}\right| \leq \varepsilon_{k}$ does not intersect C and does not intersect any of the other such closed discs around the points.

Theorem 6.70.1

Theorem 6.70.1. Cauchy's Residue Theorem.

Let C be as simple closed contour described in the positive sense. If function f is analytic inside and on C except for a finite number of singular points z_{k} for $k=1,2, \ldots, n$ inside C then

$$
\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)
$$

Proof. Since the points $z_{1}, z_{2}, \ldots, z_{n}$ are isolated then for each k with $k=1,2, \ldots, n$ there is $\varepsilon_{k}>0$ such that the closed disc $\left|z-z_{k}\right| \leq \varepsilon_{k}$ does not intersect C and does not intersect any of the other such closed discs around the points. We take the circle $|z-z+k|=\varepsilon_{k}$ and give it a positive orientation for $k=1,2, \ldots, n$ (see Figure 87).

Theorem 6.70.1

Theorem 6.70.1. Cauchy's Residue Theorem.

Let C be as simple closed contour described in the positive sense. If function f is analytic inside and on C except for a finite number of singular points z_{k} for $k=1,2, \ldots, n$ inside C then

$$
\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)
$$

Proof. Since the points $z_{1}, z_{2}, \ldots, z_{n}$ are isolated then for each k with $k=1,2, \ldots, n$ there is $\varepsilon_{k}>0$ such that the closed disc $\left|z-z_{k}\right| \leq \varepsilon_{k}$ does not intersect C and does not intersect any of the other such closed discs around the points. We take the circle $|z-z+k|=\varepsilon_{k}$ and give it a positive orientation for $k=1,2, \ldots, n$ (see Figure 87).

Theorem 6.70.1 (continued)

Proof (continued).

FIGURE 87
Then C along with $C_{1}, C_{2}, \ldots, C_{n}$ are the boundary of a closed region throughout which f is analytic. Notice that the region is multiply connected. So, by Theorem 4.49.A, $\int_{C} f(z) d z=\sum_{k=1}^{n} \int_{C_{k}} f(z) d z$ (notice that the C_{k} have a clockwise, i.e. negative, orientation in the statement of Theorem 4.49.A, so a negative sign is introduced here). Note 69.A, $\int_{C_{k}} f(z) d z=2 \pi i \operatorname{Res}_{z=z_{k}} f(z)$ and so
$\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)$, as claimed.

Theorem 6.70.1 (continued)

Proof (continued).

FIGURE 87
Then C along with $C_{1}, C_{2}, \ldots, C_{n}$ are the boundary of a closed region throughout which f is analytic. Notice that the region is multiply connected. So, by Theorem 4.49.A, $\int_{C} f(z) d z=\sum_{k=1}^{n} \int_{C_{k}} f(z) d z$ (notice that the C_{k} have a clockwise, i.e. negative, orientation in the statement of Theorem 4.49.A, so a negative sign is introduced here). By Note 69.A, $\int_{C_{k}} f(z) d z=2 \pi i \operatorname{Res}_{z=z_{k}} f(z)$ and so
$\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)$, as claimed.

