Complex Variables

Chapter 6. Residues and Poles Section 6.70. Cauchy's Residue Theorem—Proofs of Theorems

Theorem 6.70.1

Theorem 6.70.1. Cauchy's Residue Theorem.

Let *C* be as simple closed contour described in the positive sense. If function *f* is analytic inside and on *C* except for a finite number of singular points z_k for k = 1, 2, ..., n inside *C* then

$$\int_C f(z) dz = 2\pi i \sum_{k=1}^n \operatorname{Res}_{z=z_k} f(z).$$

Proof. Since the points $z_1, z_2, ..., z_n$ are isolated then for each k with k = 1, 2, ..., n there is $\varepsilon_k > 0$ such that the closed disc $|z - z_k| \le \varepsilon_k$ does not intersect C and does not intersect any of the other such closed discs around the points.

Theorem 6.70.1

Theorem 6.70.1. Cauchy's Residue Theorem.

Let C be as simple closed contour described in the positive sense. If function f is analytic inside and on C except for a finite number of singular points z_k for k = 1, 2, ..., n inside C then

$$\int_C f(z) dz = 2\pi i \sum_{k=1}^n \operatorname{Res}_{z=z_k} f(z).$$

Proof. Since the points $z_1, z_2, ..., z_n$ are isolated then for each k with k = 1, 2, ..., n there is $\varepsilon_k > 0$ such that the closed disc $|z - z_k| \le \varepsilon_k$ does not intersect C and does not intersect any of the other such closed discs around the points. We take the circle $|z - z + k| = \varepsilon_k$ and give it a positive orientation for k = 1, 2, ..., n (see Figure 87).

Theorem 6.70.1

Theorem 6.70.1. Cauchy's Residue Theorem.

Let *C* be as simple closed contour described in the positive sense. If function *f* is analytic inside and on *C* except for a finite number of singular points z_k for k = 1, 2, ..., n inside *C* then

$$\int_C f(z) dz = 2\pi i \sum_{k=1}^n \operatorname{Res}_{z=z_k} f(z).$$

Proof. Since the points $z_1, z_2, ..., z_n$ are isolated then for each k with k = 1, 2, ..., n there is $\varepsilon_k > 0$ such that the closed disc $|z - z_k| \le \varepsilon_k$ does not intersect C and does not intersect any of the other such closed discs around the points. We take the circle $|z - z + k| = \varepsilon_k$ and give it a positive orientation for k = 1, 2, ..., n (see Figure 87).

Theorem 6.70.1 (continued)

Then *C* along with C_1, C_2, \ldots, C_n are the boundary of a closed region throughout which *f* is analytic. Notice that the region is multiply connected. So, by Theorem 4.49.A, $\int_C f(z) dz = \sum_{k=1}^n \int_{C_k} f(z) dz$ (notice that the C_k have a clockwise, i.e. negative, orientation in the statement of Theorem 4.49.A, so a negative sign is introduced here). By Note 69.A, $\int_{C_k} f(z) dz = 2\pi i \operatorname{Res}_{z=z_k} f(z)$ and so $\int_C f(z) dz = 2\pi i \sum_{k=1}^n \operatorname{Res}_{z=z_k} f(z)$, as claimed.

Theorem 6.70.1 (continued)

Then *C* along with C_1, C_2, \ldots, C_n are the boundary of a closed region throughout which *f* is analytic. Notice that the region is multiply connected. So, by Theorem 4.49.A, $\int_C f(z) dz = \sum_{k=1}^n \int_{C_k} f(z) dz$ (notice that the C_k have a clockwise, i.e. negative, orientation in the statement of Theorem 4.49.A, so a negative sign is introduced here). By Note 69.A, $\int_{C_k} f(z) dz = 2\pi i \operatorname{Res}_{z=z_k} f(z)$ and so

$$\int_C f(z) dz = 2\pi i \sum_{k=1}^n \operatorname{Res}_{z=z_k} f(z), \text{ as claimed.}$$