Complex Variables

Chapter 6. Residues and Poles

Section 6.71. Residues at Infinity—Proofs of Theorems

Table of contents

(1) Theorem 6.71.1

Theorem 6.71.1

Theorem 6.71.1. If a function f is analytic everywhere in the finite plane except for a finite number of singular points interior to a positively oriented simple closed contour C, then

$$
\int_{C} f(z) d z=2 \pi i \operatorname{Res}_{z=0}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right) .
$$

Proof. Choose $R_{0}>0$ sufficiently large so that $C \subset\left\{z\left||z|<R_{0}\right\}\right.$ and define C_{0} as the circle $|z|=R_{0}$ oriented in the negative direction. See Figure 89.

Theorem 6.71.1

Theorem 6.71.1. If a function f is analytic everywhere in the finite plane except for a finite number of singular points interior to a positively oriented simple closed contour C, then

$$
\int_{C} f(z) d z=2 \pi i \operatorname{Res}_{z=0}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right) .
$$

Proof. Choose $R_{0}>0$ sufficiently large so that $C \subset\left\{z\left||z|<R_{0}\right\}\right.$ and define C_{0} as the circle $|z|=R_{0}$ oriented in the negative direction. See Figure 89.

Theorem 6.71.1

Theorem 6.71.1. If a function f is analytic everywhere in the finite plane except for a finite number of singular points interior to a positively oriented simple closed contour C, then

$$
\int_{C} f(z) d z=2 \pi i \operatorname{Res}_{z=0}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right) .
$$

Proof. Choose $R_{0}>0$ sufficiently large so that $C \subset\left\{z\left||z|<R_{0}\right\}\right.$ and define C_{0} as the circle $|z|=R_{0}$ oriented in the negative direction. See Figure 89.

Theorem 6.71.1 (continued 1)

Proof (continued). By Theorem 4.49.B, "Principle of Deformation," $\int_{C} f(z) d z=\int_{-C_{0}} f(z) d z=-\int_{C_{0}} f(z) d z$. Then, by the definition of residue at infinity, $\int_{C} f(z) d z=\operatorname{Res}_{z=\infty} f(z)$. Now we take the Laurent series of f about $z_{0}=0$ (f may or may not be analytic at z_{0}) to get by Theorem 60.1, "Laurent's Theorem," $f(z)=\sum_{n=-\infty}^{\infty} c_{n} z^{n}$ for $R_{1}<|z|<\infty$ where $R_{1}<R_{0}$ is such that $C \subset\left\{z\left||z|<R_{1}\right\}\right.$ and $c_{n}=\frac{1}{2 \pi i} \int_{-C_{0}} \frac{f(z) d z}{z^{n+1}}$ for $n \in \mathbb{Z}$ (see the note after Theorem 60.1 for the concise expression of c_{n}).

Theorem 6.71.1 (continued 1)

Proof (continued). By Theorem 4.49.B, "Principle of Deformation," $\int_{C} f(z) d z=\int_{-C_{0}} f(z) d z=-\int_{C_{0}} f(z) d z$. Then, by the definition of residue at infinity, $\int_{C} f(z) d z=\operatorname{Res}_{z=\infty} f(z)$. Now we take the Laurent series of f about $z_{0}=0$ (f may or may not be analytic at z_{0}) to get by Theorem 60.1, "Laurent's Theorem," $f(z)=\sum_{n=-\infty}^{\infty} c_{n} z^{n}$ for $R_{1}<|z|<\infty$ where $R_{1}<R_{0}$ is such that $C \subset\left\{z\left||z|<R_{1}\right\}\right.$ and $c_{n}=\frac{1}{2 \pi i} \int_{-C_{0}} \frac{f(z) d z}{z^{n+1}}$ for $n \in \mathbb{Z}$ (see the note after Theorem 60.1 for the concise expression of c_{n}). Replacing z with $1 / z$ in the Laurent series for $f(z)$ and then multiplying by $1 / z^{2}$ gives

Theorem 6.71.1 (continued 1)

Proof (continued). By Theorem 4.49.B, "Principle of Deformation," $\int_{C} f(z) d z=\int_{-C_{0}} f(z) d z=-\int_{C_{0}} f(z) d z$. Then, by the definition of residue at infinity, $\int_{C} f(z) d z=\operatorname{Res}_{z=\infty} f(z)$. Now we take the Laurent series of f about $z_{0}=0$ (f may or may not be analytic at z_{0}) to get by Theorem 60.1, "Laurent's Theorem," $f(z)=\sum_{n=-\infty}^{\infty} c_{n} z^{n}$ for $R_{1}<|z|<\infty$ where $R_{1}<R_{0}$ is such that $C \subset\left\{z\left||z|<R_{1}\right\}\right.$ and $c_{n}=\frac{1}{2 \pi i} \int_{-C_{0}} \frac{f(z) d z}{z^{n+1}}$ for $n \in \mathbb{Z}$ (see the note after Theorem 60.1 for the concise expression of c_{n}). Replacing z with $1 / z$ in the Laurent series for $f(z)$ and then multiplying by $1 / z^{2}$ gives

$$
\frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\frac{1}{z^{2}} \sum_{n=-\infty}^{\infty} \frac{c_{n}}{z^{n}}=\sum_{n=-\infty}^{\infty} \frac{c_{n}}{z^{n+2}} \text { for } 0<|z|<\frac{1}{R_{1}}
$$

Theorem 6.71.1 (continued 2)

Proof (continued). With $n=1$ we get

$$
\operatorname{Res}_{z=0}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right)=c_{-1}=\frac{1}{2 \pi i} \int_{-c_{0}} f(z) d z
$$

Now by the definition of $\operatorname{Res}_{z=\infty} f(z)$,
$\operatorname{Res}_{z=\infty} f(z)=\frac{1}{2 \pi i} \int_{C} f(z) d z=\frac{1}{2 \pi i} \int_{-C_{0}} f(z) d z=\operatorname{Res}_{z=0}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right)$
and

$$
\int_{C} f(z) d z=2 \pi i \operatorname{Res}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right),
$$

as claimed.

Theorem 6.71.1 (continued 2)

Proof (continued). With $n=1$ we get

$$
\operatorname{Res}_{z=0}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right)=c_{-1}=\frac{1}{2 \pi i} \int_{-c_{0}} f(z) d z
$$

Now by the definition of $\operatorname{Res}_{z=\infty} f(z)$,
$\operatorname{Res}_{z=\infty} f(z)=\frac{1}{2 \pi i} \int_{C} f(z) d z=\frac{1}{2 \pi i} \int_{-C_{0}} f(z) d z=\operatorname{Res}_{z=0}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right)$
and

$$
\int_{C} f(z) d z=2 \pi i \operatorname{Res}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right),
$$

as claimed.

