Complex Variables

Chapter 6. Residues and Poles

Section 6.75. Zeros of Analytic Functions-Proofs of Theorems

Table of contents

(1) Theorem 6.75.1
(2) Theorem 6.75.2
(3) Theorem 6.75.3

Theorem 6.75.1

Theorem 6.75.1. Let function f be analytic at z_{0}. It has a zero of order m at z_{0} if and only if there is a function g which is analytic and nonzero at z_{0} such that $f(z)=\left(z-z_{0}\right)^{m} g(z)$.

Proof. First, by Taylor's Theorem (Theorem 5.57.!), f has a power series representation $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$ valid throughout some neighborhood $\left|z-z_{0}\right|<\varepsilon$ of z_{0}.

Theorem 6.75.1

Theorem 6.75.1. Let function f be analytic at z_{0}. It has a zero of order m at z_{0} if and only if there is a function g which is analytic and nonzero at z_{0} such that $f(z)=\left(z-z_{0}\right)^{m} g(z)$.

Proof. First, by Taylor's Theorem (Theorem 5.57.!), f has a power series representation $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$ valid throughout some neighborhood $\left|z-z_{0}\right|<\varepsilon$ of z_{0}.

Suppose $f(z)=\left(z-z_{0}\right)^{m} g(z)$. Then since g is hypothesized to be analytic at z_{0}, then $g(z)=\sum_{n=0}^{\infty} \frac{g^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$ for some neighborhood $\left|z-z_{0}\right|<\varepsilon$ of z_{0} (by Taylor's Theorem, Theorem 5.57.A). So $f(z)=\left(z-z_{0}\right)^{m} g(z)=\sum_{n=0}^{\infty} \frac{g^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n+m}$ for $\left|z-z_{0}\right|<\varepsilon$.

Theorem 6.75.1

Theorem 6.75.1. Let function f be analytic at z_{0}. It has a zero of order m at z_{0} if and only if there is a function g which is analytic and nonzero at z_{0} such that $f(z)=\left(z-z_{0}\right)^{m} g(z)$.

Proof. First, by Taylor's Theorem (Theorem 5.57.!), f has a power series representation $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$ valid throughout some neighborhood $\left|z-z_{0}\right|<\varepsilon$ of z_{0}.

Suppose $f(z)=\left(z-z_{0}\right)^{m} g(z)$. Then since g is hypothesized to be analytic at z_{0}, then $g(z)=\sum_{n=0}^{\infty} \frac{g^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$ for some neighborhood $\left|z-z_{0}\right|<\varepsilon$ of z_{0} (by Taylor's Theorem, Theorem 5.57.A). So $f(z)=\left(z-z_{0}\right)^{m} g(z)=\sum_{n=0}^{\infty} \frac{g^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n+m}$ for $\left|z-z_{0}\right|<\varepsilon$.

Theorem 6.75.1 (continued 1)

Theorem 6.75.1. Let function f be analytic at z_{0}. It has a zero of order m at z_{0} if and only if there is a function g which is analytic and nonzero at z_{0} such that $f(z)=\left(z-z_{0}\right)^{m} g(z)$.

Proof (continued). So by Theorem 5.66.1 (Uniqueness of Power Series Representations)

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} \frac{g^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n+m}
$$

and so $f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(m-1)}\left(z_{0}\right)=0$. Also, $\frac{f^{(m)}\left(z_{0}\right)}{(m+1)!}=g\left(z_{0}\right) \neq 0$ by hypothesis and so $f^{(m)}\left(z_{0}\right) \neq 0$, as claimed.

Now suppose f has a zero of order m at z_{0}. That is, suppose $f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(m-1)}\left(z_{0}\right)=0$ and $f^{(m)}\left(z_{0}\right) \neq 0$.

Theorem 6.75.1 (continued 1)

Theorem 6.75.1. Let function f be analytic at z_{0}. It has a zero of order m at z_{0} if and only if there is a function g which is analytic and nonzero at z_{0} such that $f(z)=\left(z-z_{0}\right)^{m} g(z)$.

Proof (continued). So by Theorem 5.66.1 (Uniqueness of Power Series Representations)

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} \frac{g^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n+m}
$$

and so $f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(m-1)}\left(z_{0}\right)=0$. Also, $\frac{f^{(m)}\left(z_{0}\right)}{(m+1)!}=g\left(z_{0}\right) \neq 0$ by hypothesis and so $f^{(m)}\left(z_{0}\right) \neq 0$, as claimed.

Now suppose f has a zero of order m at z_{0}. That is, suppose $f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(m-1)}\left(z_{0}\right)=0$ and $f^{(m)}\left(z_{0}\right) \neq 0$.

Theorem 6.75.1 (continued 2)

Theorem 6.75.1. Let function f be analytic at z_{0}. It has a zero of order m at z_{0} if and only if there is a function g which is analytic and nonzero at z_{0} such that $f(z)=\left(z-z_{0}\right)^{m} g(z)$.

Proof (continued). Since $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$ then

$$
\begin{gathered}
f(z)=\sum_{n=m}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}=\left(z-z_{0}\right)^{m} \sum_{n=m}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n-m} \\
=\left(z-z_{0}\right)^{m} \sum_{n=0}^{\infty} \frac{f^{(n+m)}\left(z_{0}\right)}{(n+m)!}\left(z-z_{0}\right)^{n}
\end{gathered}
$$

for $\left|z-z_{0}\right|<\varepsilon$. So $f(z)=\left(z-z_{0}\right)^{m} g(z)$ where
$g(z)=\sum_{n=0}^{\infty} \frac{f^{(n+m)}\left(z_{0}\right)}{(n+m)!}\left(z-z_{0}\right)^{n}$ for $\left|z-z_{0}\right|<\varepsilon$. So g is analytic at z_{0}
and $g\left(z_{0}\right)=\frac{f^{(m)}\left(z_{0}\right)}{m!} \neq 0$, as claimed.

Theorem 6.75.1 (continued 2)

Theorem 6.75.1. Let function f be analytic at z_{0}. It has a zero of order m at z_{0} if and only if there is a function g which is analytic and nonzero at z_{0} such that $f(z)=\left(z-z_{0}\right)^{m} g(z)$.

Proof (continued). Since $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$ then

$$
\begin{gathered}
f(z)=\sum_{n=m}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}=\left(z-z_{0}\right)^{m} \sum_{n=m}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n-m} \\
=\left(z-z_{0}\right)^{m} \sum_{n=0}^{\infty} \frac{f^{(n+m)}\left(z_{0}\right)}{(n+m)!}\left(z-z_{0}\right)^{n}
\end{gathered}
$$

for $\left|z-z_{0}\right|<\varepsilon$. So $f(z)=\left(z-z_{0}\right)^{m} g(z)$ where $g(z)=\sum_{n=0}^{\infty} \frac{f^{(n+m)}\left(z_{0}\right)}{(n+m)!}\left(z-z_{0}\right)^{n}$ for $\left|z-z_{0}\right|<\varepsilon$. So g is analytic at z_{0} and $g\left(z_{0}\right)=\frac{f^{(m)}\left(z_{0}\right)}{m!} \neq 0$, as claimed.

Theorem 6.75.2

Theorem 6.75.2. Given a function f and a point z_{0}, suppose that
(a) f is analytic at z_{0},
(b) $f\left(z_{0}\right)=0$ but f is not identically equal to zero in any neighborhood of z_{0}.
Then $f(z) \neq 0$ throughout some deleted neighborhood $0<\left|z-z_{0}\right|<\varepsilon$ of z_{0}.

Proof. Since f is not identically equal to zero then not all derivatives of f at z_{0} are 0 (or else, by Taylor's Theorem, Theorem 5.57.A, f has a series representation, $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$, but if all derivatives of f at z_{0} are 0 then the series of f is identically 0 , a contradiction).

Theorem 6.75.2

Theorem 6.75.2. Given a function f and a point z_{0}, suppose that
(a) f is analytic at z_{0},
(b) $f\left(z_{0}\right)=0$ but f is not identically equal to zero in any neighborhood of z_{0}.
Then $f(z) \neq 0$ throughout some deleted neighborhood $0<\left|z-z_{0}\right|<\varepsilon$ of z_{0}.
Proof. Since f is not identically equal to zero then not all derivatives of f at z_{0} are 0 (or else, by Taylor's Theorem, Theorem 5.57.A, f has a series representation, $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$, but if all derivatives of f at z_{0} are 0 then the series of f is identically 0 , a contradiction). So z_{0} is a zero of some order m and by Theorem 6.57.1, $f(z)=\left(z-z_{0}\right)^{m} g(z)$ where g is analytic and nonzero at z_{0}. So g is continuous and by Theorem 2.18.2, g is nonzero in some neighborhood $\left|z-z_{0}\right|<\varepsilon$ of z_{0}. Since $\left(z-z_{0}\right)^{m}$ is nonzero for $z \neq z_{0}$ then $f(z)=\left(z-z_{0}\right)^{m} g(z)$ is nonzero in

Theorem 6.75.2

Theorem 6.75.2. Given a function f and a point z_{0}, suppose that
(a) f is analytic at z_{0},
(b) $f\left(z_{0}\right)=0$ but f is not identically equal to zero in any neighborhood of z_{0}.
Then $f(z) \neq 0$ throughout some deleted neighborhood $0<\left|z-z_{0}\right|<\varepsilon$ of z_{0}.

Proof. Since f is not identically equal to zero then not all derivatives of f at z_{0} are 0 (or else, by Taylor's Theorem, Theorem 5.57.A, f has a series representation, $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$, but if all derivatives of f at z_{0} are 0 then the series of f is identically 0 , a contradiction). So z_{0} is a zero of some order m and by Theorem 6.57.1, $f(z)=\left(z-z_{0}\right)^{m} g(z)$ where g is analytic and nonzero at z_{0}. So g is continuous and by Theorem 2.18.2, g is nonzero in some neighborhood $\left|z-z_{0}\right|<\varepsilon$ of z_{0}. Since $\left(z-z_{0}\right)^{m}$ is nonzero for $z \neq z_{0}$ then $f(z)=\left(z-z_{0}\right)^{m} g(z)$ is nonzero in $0<\left|z-z_{0}\right|<\varepsilon$.

Theorem 6.75.3

Theorem 6.75.3. Let f be a function and let z_{0} a point where
(a) f is analytic throughout a neighborhood N_{0} of z_{0} and with power series representation $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ for $z \in N_{0}$, and
(b) $f(z)=0$ at each point z of a domain D or a line segment L containing z_{0}.
Then $f(z) \equiv 0$ in N_{0}. That is, f is identically equal to zero throughout N_{0}.
Proof. Let f satisfy the stated conditions. ASSUME $f(z)$ is not identically zero in some neighborhood of z_{0}, but $f\left(z_{0}\right)=0$. Then by Theorem 6.75.2, $f(z) \neq 0$ on some deleted neighborhood $0<\left|z-z_{0}\right|<\varepsilon$ of z_{0}. But this CONTRADICTS hypothesis (b).

Theorem 6.75.3

Theorem 6.75.3. Let f be a function and let z_{0} a point where
(a) f is analytic throughout a neighborhood N_{0} of z_{0} and with power series representation $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ for $z \in N_{0}$, and
(b) $f(z)=0$ at each point z of a domain D or a line segment L containing z_{0}.
Then $f(z) \equiv 0$ in N_{0}. That is, f is identically equal to zero throughout N_{0}.
Proof. Let f satisfy the stated conditions. ASSUME $f(z)$ is not identically zero in some neighborhood of z_{0}, but $f\left(z_{0}\right)=0$. Then by Theorem 6.75.2, $f(z) \neq 0$ on some deleted neighborhood $0<\left|z-z_{0}\right|<\varepsilon$ of z_{0}. But this CONTRADICTS hypothesis (b). So f is identically zero on some neighborhood of z_{0} and so $f^{(n)}\left(z_{0}\right)=0$ for all $n \in \mathbb{N}$. Since $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$ for $z \in N_{0}$, then f is identically 0 on N_{0}.

Theorem 6.75.3

Theorem 6.75.3. Let f be a function and let z_{0} a point where
(a) f is analytic throughout a neighborhood N_{0} of z_{0} and with power series representation $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ for $z \in N_{0}$, and
(b) $f(z)=0$ at each point z of a domain D or a line segment L containing z_{0}.
Then $f(z) \equiv 0$ in N_{0}. That is, f is identically equal to zero throughout N_{0}.
Proof. Let f satisfy the stated conditions. ASSUME $f(z)$ is not identically zero in some neighborhood of z_{0}, but $f\left(z_{0}\right)=0$. Then by Theorem 6.75.2, $f(z) \neq 0$ on some deleted neighborhood $0<\left|z-z_{0}\right|<\varepsilon$ of z_{0}. But this CONTRADICTS hypothesis (b). So f is identically zero on some neighborhood of z_{0} and so $f^{(n)}\left(z_{0}\right)=0$ for all $n \in \mathbb{N}$. Since $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$ for $z \in N_{0}$, then f is identically 0 on N_{0}.

