Complex Variables

Chapter 6. Residues and Poles

Section 6.76. Zeros and Poles-Proofs of Theorems

Table of contents

(1) Theorem 6.76.1
(2) Theorem 6.76.2

Theorem 6.76.1

Theorem 6.76.1. Suppose that
(a) two functions p and q are analytic at a point z_{0}, and
(b) $p\left(z_{0}\right) \neq 0$ and q has a zero of order m at z_{0}.

Then the quotient $p(z) / q(z)$ has a pole of order m at z_{0}.
Proof. Since q has a zero of order m at z_{0} then by Theorem 6.75.2, there is a deleted neighborhood at z_{0} throughout which $q(z) \neq 0$. So p / q has an isolated singular point at z_{0} and by Theorem 6.75.1, we have $q(z)=\left(z-z_{0}\right)^{m} g(z)$ where g is analytic and nonzero at z_{0}.

Theorem 6.76.1

Theorem 6.76.1. Suppose that
(a) two functions p and q are analytic at a point z_{0}, and
(b) $p\left(z_{0}\right) \neq 0$ and q has a zero of order m at z_{0}.

Then the quotient $p(z) / q(z)$ has a pole of order m at z_{0}.
Proof. Since q has a zero of order m at z_{0} then by Theorem 6.75.2, there is a deleted neighborhood at z_{0} throughout which $q(z) \neq 0$. So p / q has an isolated singular point at z_{0} and by Theorem 6.75.1, we have $q(z)=\left(z-z_{0}\right)^{m} g(z)$ where g is analytic and nonzero at z_{0}.

$$
\frac{p(z)}{q(z)}=\frac{p(z)}{\left(z-z_{0}\right)^{m} g(z)}=\frac{p(z) / g(z)}{\left(z-z_{0}\right)^{m}}=\frac{\varphi(z)}{\left(z-z_{0}\right)^{m}}
$$

where $\varphi(z)=p(z) / q(z)$ is analytic and nonzero (by hypothesis (b)) are z_{0}. So by Theorem 6.73.1, z_{0} is a pole of order m of p / q, as claimed.

Theorem 6.76.1

Theorem 6.76.1. Suppose that
(a) two functions p and q are analytic at a point z_{0}, and
(b) $p\left(z_{0}\right) \neq 0$ and q has a zero of order m at z_{0}.

Then the quotient $p(z) / q(z)$ has a pole of order m at z_{0}.
Proof. Since q has a zero of order m at z_{0} then by Theorem 6.75.2, there is a deleted neighborhood at z_{0} throughout which $q(z) \neq 0$. So p / q has an isolated singular point at z_{0} and by Theorem 6.75.1, we have $q(z)=\left(z-z_{0}\right)^{m} g(z)$ where g is analytic and nonzero at z_{0}. So

$$
\frac{p(z)}{q(z)}=\frac{p(z)}{\left(z-z_{0}\right)^{m} g(z)}=\frac{p(z) / g(z)}{\left(z-z_{0}\right)^{m}}=\frac{\varphi(z)}{\left(z-z_{0}\right)^{m}}
$$

where $\varphi(z)=p(z) / q(z)$ is analytic and nonzero (by hypothesis (b)) are z_{0}. So by Theorem 6.73.1, z_{0} is a pole of order m of p / q, as claimed.

Theorem 6.76.2

Theorem 6.76.2. Let the functions p and q be analytic at z_{0}. If $p\left(z_{0}\right) \neq 0, q\left(z_{0}\right)=0$, and $q^{\prime}\left(z_{0}\right)=0$ (that is, q has a zero of multiplicity one at z_{0}) then z_{0} is a simple pole of p / q and $\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}$.

Proof. By Theorem 6.75.1, $q(z)=\left(z-z_{0}\right) g(z)$ where g is analytic and nonzero at z_{0}. So by Theorem 6.76.1, p / q has a simple pole at z_{0}.

Theorem 6.76.2

Theorem 6.76.2. Let the functions p and q be analytic at z_{0}. If $p\left(z_{0}\right) \neq 0, q\left(z_{0}\right)=0$, and $q^{\prime}\left(z_{0}\right)=0$ (that is, q has a zero of multiplicity one at z_{0}) then z_{0} is a simple pole of p / q and $\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}$.

Proof. By Theorem 6.75.1, $q(z)=\left(z-z_{0}\right) g(z)$ where g is analytic and nonzero at z_{0}. So by Theorem 6.76.1, p / q has a simple pole at z_{0}. So, as seen in the proof of Theorem 6.76.1, $\frac{p(z)}{q(z)}=\frac{p(z) / g(z)}{z-z_{0}}=\frac{\varphi(z)}{z-z_{0}}$. So by Theorem 6.73,1, $\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\varphi\left(z_{0}\right)=\frac{p\left(z_{0}\right)}{g\left(z_{0}\right)}$

Theorem 6.76.2

Theorem 6.76.2. Let the functions p and q be analytic at z_{0}. If $p\left(z_{0}\right) \neq 0, q\left(z_{0}\right)=0$, and $q^{\prime}\left(z_{0}\right)=0$ (that is, q has a zero of multiplicity one at z_{0}) then z_{0} is a simple pole of p / q and $\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}$.

Proof. By Theorem 6.75.1, $q(z)=\left(z-z_{0}\right) g(z)$ where g is analytic and nonzero at z_{0}. So by Theorem 6.76.1, p / q has a simple pole at z_{0}. So, as seen in the proof of Theorem 6.76.1, $\frac{p(z)}{q(z)}=\frac{p(z) / g(z)}{z-z_{0}}=\frac{\varphi(z)}{z-z_{0}}$. So by Theorem 6.73,1, $\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\varphi\left(z_{0}\right)=\frac{p\left(z_{0}\right)}{g\left(z_{0}\right)}$.
$g(z)=\left(z-z_{0}\right) g(z)$ then $q^{\prime}(z)=[1] g(z)+\left(z-z_{0}\right)\left[g^{\prime}(z)\right]$ and $q^{\prime}\left(z_{0}\right)=g\left(z_{0}\right)$, so

$$
\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)}{g\left(z_{0}\right)}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)},
$$

Theorem 6.76.2

Theorem 6.76.2. Let the functions p and q be analytic at z_{0}. If $p\left(z_{0}\right) \neq 0, q\left(z_{0}\right)=0$, and $q^{\prime}\left(z_{0}\right)=0$ (that is, q has a zero of multiplicity one at z_{0}) then z_{0} is a simple pole of p / q and $\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}$.

Proof. By Theorem 6.75.1, $q(z)=\left(z-z_{0}\right) g(z)$ where g is analytic and nonzero at z_{0}. So by Theorem 6.76.1, p / q has a simple pole at z_{0}. So, as seen in the proof of Theorem 6.76.1, $\frac{p(z)}{q(z)}=\frac{p(z) / g(z)}{z-z_{0}}=\frac{\varphi(z)}{z-z_{0}}$. So by Theorem 6.73,1, $\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\varphi\left(z_{0}\right)=\frac{p\left(z_{0}\right)}{g\left(z_{0}\right)}$. But since $g(z)=\left(z-z_{0}\right) g(z)$ then $q^{\prime}(z)=[1] g(z)+\left(z-z_{0}\right)\left[g^{\prime}(z)\right]$ and $q^{\prime}\left(z_{0}\right)=g\left(z_{0}\right)$, so

$$
\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)}{g\left(z_{0}\right)}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)},
$$

as claimed.

