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Theorem 6.77.1

Theorem 6.77.1

Theorem 6.77.1. If z0 is a pole of a function f then limz→z0 f (z) = ∞.

Proof. Suppose f has a pole of order m at z = z0. Then by Theorem

6.73.1, f (z) =
ϕ(z)

(z − z0)m
where ϕ is analytic for |z − z0| < R2 for some

R2 > 0 and ϕ(z0) 6= 0.

Then

lim
z→z0

1

f (z)
= lim

z→z0

(z − z0)
m

ϕ(z)
=

limz→z0(z − z0)
m

limz→z0 ϕ(z)
=

0

ϕ(z0
= 0.

So limz→z0 f (z) = ∞ by Theorem 2.17.1.
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Theorem 6.77.2

Theorem 6.77.2

Theorem 6.77.2. If z0 is a removable singular point of a function f , then
f is analytic and bounded in some deleted neighborhood 0 < |z − z0| < ε
of z0.

Proof. Since a removable singular point is isolated (by definition) then f
is analytic for 0 < |z − z0| < R2 for some R2 > 0. By Note 6.72.A, there is
analytic g defined for |z − z0| < R2 such that g(z) = f (z) for
0 < |z − z0| < R2.

Let ε > 0 satisfy ε < R2. Then g is continuous on
|z − z0| ≤ ε and so by Theorem 2.18.3 there is M such that |g(z)| ≤ M
for all |z − z0| ≤ ε. Therefore |f (z)| ≤ M for all 0 < |z − z0| ≤ ε and the
claim holds.
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Lemma 6.77.1. Riemann’s Theorem

Lemma 6.77.1. Riemann’s Theorem

Lemma 7.77.1. Riemann’s Theorem.
Suppose that a function f is analytic and bounded in some deleted
neighborhood 0 < |z − z0| < ε of z0. If f is not analytic at z0, then f has
a removable singularity at z0.

Proof. Since f is analytic in 0 < |z − z0| < ε then by Theorem 60.1,
“Laurent’s Theorem,” there is a Laurent series for f centered at z0:

f (z) =
∞∑

n=−∞
cn(z−z0)

n =
∞∑

n=0

an(z−z0)
n+

∞∑
n=1

bn

(z − z0)n
for 0 < |z−z0| < ε.

Let C denote the positively oriented circle |z − z0| = ρ where 0 < ρ < ε

(so that f is analytic on C ). By Laurent’s Theorem, bn = 1
2πi

∫
C

f (z) dz
(z−z0)−n+1

for n = 1, 2, . . ..
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Lemma 6.77.1. Riemann’s Theorem

Lemma 6.77.1. Riemann’s Theorem (continued)

Lemma 7.77.1. Riemann’s Theorem.
Suppose that a function f is analytic and bounded in some deleted
neighborhood 0 < |z − z0| < ε of z0. If f is not analytic at z0, then f has
a removable singularity at z0.

Proof (continued). Since f is hypothesized to be bounded on
0 < |z − z0| < ε, let M be the bound and then

|bn| =

∣∣∣∣ 1

2πi

∫
C

f (z) dz

(z − z0)−n+1

∣∣∣∣
≤ 1

2π

M2πρ

ρ−n+1
by Theorem 4.43.A

= Mρn for n = 1, 2, . . . .

Since 0 < ρ < ε is arbitrary, this inequality holds for all such ρ and hence
|bn| = limρ→0 |bn| ≤ limρ→0 Mρn = 0. That is, bn = cn = 0 for all
n − 1, 2, . . . and the Laurent series for f is f (z) =

∑∞
n=0 an(z − z0)

n. So,
by definition, the singular point z0 of f is a removable singular point.
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Theorem 6.73.1. Casorati-Weierstrass Theorem

Theorem 6.73.1

Theorem 6.77.3. Casorati-Weierstrass Theorem
Suppose that z0 is an essential singularity of function f and let w0 be any
complex number. Then for all ε > 0, the inequality |f (z)− w0| < ε is
satisfied at some point a in every deleted neighborhood 0 < |z − z0| < δ of
z0 for δ > 0.

Proof. Let w0 ∈ C, ε > 0, and δ > 0 be given where δ is sufficiently small
so that f is analytic on 0 < |z − z0| < δ.

ASSUME |f (z)− w0| ≥ ε for all
z in 0 < |z − z0 < δ. Then the function g(z) = 1/(f (z)− w0) is analytic
and bounded (by M = 1/ε) on 0 < |z − z0| < δ (notice that g is nonzero
by the definition for these z values). So by Lemma 6.77.1, z0 is a
removable singularity of g . We extend g to be defined at z0 by setting
g(z0) = limz→z0 g(z). Then g is analytic on |z − z0| < δ (see Note
6.72.A).
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Theorem 6.73.1. Casorati-Weierstrass Theorem

Theorem 6.73.1 (continued)

Proof (continued). If g(z0) 6= 0 then f (z) = 1
g(z) + w0 and f is analytic

where g is nonzero. Since g(z0) 6= 0 then g(z) 6= 0 for |z − z0| < δ. But
then f is analytic on 0 < |z − z0| < δ and limz→z0 f (z) = 1

g(z0)
+ w0. So

from the definition of limit, there is δ1 such that 0 < δ1 < δ and f is
bounded on 0 < |z − z0| < δ1. But then, by Lemma 6.77.1, f has a
removable singular point at z = z0, not an essential singularity, a
CONTRADICTION.

If g(z0) = 0 then, since g is not identically the zero function (since g is
nonzero for 0 < |z − z0| < δ) then z0 is a zero of g of some order m (see
Section 75) and so by Theorem 6.76.1 (with p(z) = 1 + g(z)w0 and

q(z) = g(z)), f (z) = 1
g(z) + w0 = 1+g(z)w0

g(z) has a pole of order m at z0,
CONTRADICTING the fact that f has an essential singularity, no a pole
at z0. So the assumption that |f (z)− w0| ≥ ε for all 0|z − z0| < δ is false
and so there must be some point z in 0 < |z − z0| < δ such that all
0 < |z − z0| < δ is false and so there must be some point z in
0 < |z − z0| < δ such that |f (z)− w0| < ε, as claimed.
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