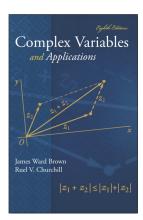
## **Complex Variables**

### Chapter 6. Residues and Poles Section 6.77. Behavior of Functions Near Isolated Singular Points—Proofs of Theorems



()





- 3 Lemma 6.77.1. Riemann's Theorem
  - Theorem 6.73.1. Casorati-Weierstrass Theorem

### **Theorem 6.77.1.** If $z_0$ is a pole of a function f then $\lim_{z\to z_0} f(z) = \infty$ .

**Proof.** Suppose f has a pole of order m at  $z = z_0$ . Then by Theorem 6.73.1,  $f(z) = \frac{\varphi(z)}{(z - z_0)^m}$  where  $\varphi$  is analytic for  $|z - z_0| < R_2$  for some  $R_2 > 0$  and  $\varphi(z_0) \neq 0$ .

**Complex Variables** 

**Theorem 6.77.1.** If  $z_0$  is a pole of a function f then  $\lim_{z\to z_0} f(z) = \infty$ .

**Proof.** Suppose *f* has a pole of order *m* at  $z = z_0$ . Then by Theorem 6.73.1,  $f(z) = \frac{\varphi(z)}{(z - z_0)^m}$  where  $\varphi$  is analytic for  $|z - z_0| < R_2$  for some  $R_2 > 0$  and  $\varphi(z_0) \neq 0$ . Then

 $\lim_{z \to z_0} \frac{1}{f(z)} = \lim_{z \to z_0} \frac{(z - z_0)^m}{\varphi(z)} = \frac{\lim_{z \to z_0} (z - z_0)^m}{\lim_{z \to z_0} \varphi(z)} = \frac{0}{\varphi(z_0)} = 0.$ 

So  $\lim_{z\to z_0} f(z) = \infty$  by Theorem 2.17.1.

**Theorem 6.77.1.** If  $z_0$  is a pole of a function f then  $\lim_{z\to z_0} f(z) = \infty$ .

**Proof.** Suppose f has a pole of order m at  $z = z_0$ . Then by Theorem 6.73.1,  $f(z) = \frac{\varphi(z)}{(z - z_0)^m}$  where  $\varphi$  is analytic for  $|z - z_0| < R_2$  for some  $R_2 > 0$  and  $\varphi(z_0) \neq 0$ . Then

$$\lim_{z \to z_0} \frac{1}{f(z)} = \lim_{z \to z_0} \frac{(z - z_0)^m}{\varphi(z)} = \frac{\lim_{z \to z_0} (z - z_0)^m}{\lim_{z \to z_0} \varphi(z)} = \frac{0}{\varphi(z_0)} = 0.$$

So  $\lim_{z\to z_0} f(z) = \infty$  by Theorem 2.17.1.

**Theorem 6.77.2.** If  $z_0$  is a removable singular point of a function f, then f is analytic and bounded in some deleted neighborhood  $0 < |z - z_0| < \varepsilon$  of  $z_0$ .

**Proof.** Since a removable singular point is isolated (by definition) then f is analytic for  $0 < |z - z_0| < R_2$  for some  $R_2 > 0$ . By Note 6.72.A, there is analytic g defined for  $|z - z_0| < R_2$  such that g(z) = f(z) for  $0 < |z - z_0| < R_2$ .

**Complex Variables** 

**Theorem 6.77.2.** If  $z_0$  is a removable singular point of a function f, then f is analytic and bounded in some deleted neighborhood  $0 < |z - z_0| < \varepsilon$  of  $z_0$ .

**Proof.** Since a removable singular point is isolated (by definition) then f is analytic for  $0 < |z - z_0| < R_2$  for some  $R_2 > 0$ . By Note 6.72.A, there is analytic g defined for  $|z - z_0| < R_2$  such that g(z) = f(z) for  $0 < |z - z_0| < R_2$ . Let  $\varepsilon > 0$  satisfy  $\varepsilon < R_2$ . Then g is continuous on  $|z - z_0| \le \varepsilon$  and so by Theorem 2.18.3 there is M such that  $|g(z)| \le M$  for all  $|z - z_0| \le \varepsilon$ . Therefore  $|f(z)| \le M$  for all  $0 < |z - z_0| \le \varepsilon$  and the claim holds.

**Theorem 6.77.2.** If  $z_0$  is a removable singular point of a function f, then f is analytic and bounded in some deleted neighborhood  $0 < |z - z_0| < \varepsilon$  of  $z_0$ .

**Proof.** Since a removable singular point is isolated (by definition) then f is analytic for  $0 < |z - z_0| < R_2$  for some  $R_2 > 0$ . By Note 6.72.A, there is analytic g defined for  $|z - z_0| < R_2$  such that g(z) = f(z) for  $0 < |z - z_0| < R_2$ . Let  $\varepsilon > 0$  satisfy  $\varepsilon < R_2$ . Then g is continuous on  $|z - z_0| \le \varepsilon$  and so by Theorem 2.18.3 there is M such that  $|g(z)| \le M$  for all  $|z - z_0| \le \varepsilon$ . Therefore  $|f(z)| \le M$  for all  $0 < |z - z_0| \le \varepsilon$  and the claim holds.

# Lemma 6.77.1. Riemann's Theorem

#### Lemma 7.77.1. Riemann's Theorem.

Suppose that a function f is analytic and bounded in some deleted neighborhood  $0 < |z - z_0| < \varepsilon$  of  $z_0$ . If f is not analytic at  $z_0$ , then f has a removable singularity at  $z_0$ .

**Proof.** Since f is analytic in  $0 < |z - z_0| < \varepsilon$  then by Theorem 60.1, "Laurent's Theorem," there is a Laurent series for f centered at  $z_0$ :

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n} \text{ for } 0 < |z-z_0| < \varepsilon.$$

# Lemma 6.77.1. Riemann's Theorem

#### Lemma 7.77.1. Riemann's Theorem.

Suppose that a function f is analytic and bounded in some deleted neighborhood  $0 < |z - z_0| < \varepsilon$  of  $z_0$ . If f is not analytic at  $z_0$ , then f has a removable singularity at  $z_0$ .

**Proof.** Since f is analytic in  $0 < |z - z_0| < \varepsilon$  then by Theorem 60.1, "Laurent's Theorem," there is a Laurent series for f centered at  $z_0$ :

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n} \text{ for } 0 < |z-z_0| < \varepsilon.$$

Let *C* denote the positively oriented circle  $|z - z_0| = \rho$  where  $0 < \rho < \varepsilon$ (so that *f* is analytic on *C*). By Laurent's Theorem,  $b_n = \frac{1}{2\pi i} \int_C \frac{f(z) dz}{(z-z_0)^{-n+1}}$  for n = 1, 2, ...

# Lemma 6.77.1. Riemann's Theorem

#### Lemma 7.77.1. Riemann's Theorem.

Suppose that a function f is analytic and bounded in some deleted neighborhood  $0 < |z - z_0| < \varepsilon$  of  $z_0$ . If f is not analytic at  $z_0$ , then f has a removable singularity at  $z_0$ .

**Proof.** Since f is analytic in  $0 < |z - z_0| < \varepsilon$  then by Theorem 60.1, "Laurent's Theorem," there is a Laurent series for f centered at  $z_0$ :

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n} \text{ for } 0 < |z-z_0| < \varepsilon.$$

Let *C* denote the positively oriented circle  $|z - z_0| = \rho$  where  $0 < \rho < \varepsilon$ (so that *f* is analytic on *C*). By Laurent's Theorem,  $b_n = \frac{1}{2\pi i} \int_C \frac{f(z) dz}{(z-z_0)^{-n+1}}$  for n = 1, 2, ...

# Lemma 6.77.1. Riemann's Theorem (continued)

#### Lemma 7.77.1. Riemann's Theorem.

Suppose that a function f is analytic and bounded in some deleted neighborhood  $0 < |z - z_0| < \varepsilon$  of  $z_0$ . If f is not analytic at  $z_0$ , then f has a removable singularity at  $z_0$ .

**Proof (continued).** Since *f* is hypothesized to be bounded on  $0 < |z - z_0| < \varepsilon$ , let *M* be the bound and then

$$b_n| = \left| \frac{1}{2\pi i} \int_C \frac{f(z) dz}{(z - z_0)^{-n+1}} \right|$$
  
$$\leq \frac{1}{2\pi} \frac{M 2\pi \rho}{\rho^{-n+1}} \text{ by Theorem 4.43.A}$$
  
$$= M \rho^n \text{ for } n = 1, 2, \dots$$

# Lemma 6.77.1. Riemann's Theorem (continued)

### Lemma 7.77.1. Riemann's Theorem.

Suppose that a function f is analytic and bounded in some deleted neighborhood  $0 < |z - z_0| < \varepsilon$  of  $z_0$ . If f is not analytic at  $z_0$ , then f has a removable singularity at  $z_0$ .

**Proof (continued).** Since *f* is hypothesized to be bounded on  $0 < |z - z_0| < \varepsilon$ , let *M* be the bound and then

$$|b_n| = \left| \frac{1}{2\pi i} \int_C \frac{f(z) dz}{(z - z_0)^{-n+1}} \right|$$
  
$$\leq \frac{1}{2\pi} \frac{M 2\pi \rho}{\rho^{-n+1}} \text{ by Theorem 4.43.A}$$
  
$$= M \rho^n \text{ for } n = 1, 2, \dots$$

Since  $0 < \rho < \varepsilon$  is arbitrary, this inequality holds for all such  $\rho$  and hence  $|b_n| = \lim_{\rho \to 0} |b_n| \le \lim_{\rho \to 0} M\rho^n = 0$ . That is,  $b_n = c_n = 0$  for all  $n - 1, 2, \ldots$  and the Laurent series for f is  $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ . So, by definition, the singular point  $z_0$  of f is a removable singular point.

# Lemma 6.77.1. Riemann's Theorem (continued)

### Lemma 7.77.1. Riemann's Theorem.

Suppose that a function f is analytic and bounded in some deleted neighborhood  $0 < |z - z_0| < \varepsilon$  of  $z_0$ . If f is not analytic at  $z_0$ , then f has a removable singularity at  $z_0$ .

**Proof (continued).** Since *f* is hypothesized to be bounded on  $0 < |z - z_0| < \varepsilon$ , let *M* be the bound and then

$$|b_n| = \left| \frac{1}{2\pi i} \int_C \frac{f(z) dz}{(z - z_0)^{-n+1}} \right|$$
  

$$\leq \frac{1}{2\pi} \frac{M 2\pi \rho}{\rho^{-n+1}} \text{ by Theorem 4.43.A}$$
  

$$= M \rho^n \text{ for } n = 1, 2, \dots$$

Since  $0 < \rho < \varepsilon$  is arbitrary, this inequality holds for all such  $\rho$  and hence  $|b_n| = \lim_{\rho \to 0} |b_n| \le \lim_{\rho \to 0} M\rho^n = 0$ . That is,  $b_n = c_n = 0$  for all  $n - 1, 2, \ldots$  and the Laurent series for f is  $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ . So, by definition, the singular point  $z_0$  of f is a removable singular point.

### Theorem 6.77.3. Casorati-Weierstrass Theorem

Suppose that  $z_0$  is an essential singularity of function f and let  $w_0$  be any complex number. Then for all  $\varepsilon > 0$ , the inequality  $|f(z) - w_0| < \varepsilon$  is satisfied at some point a in every deleted neighborhood  $0 < |z - z_0| < \delta$  of  $z_0$  for  $\delta > 0$ .

**Proof.** Let  $w_0 \in \mathbb{C}$ ,  $\varepsilon > 0$ , and  $\delta > 0$  be given where  $\delta$  is sufficiently small so that f is analytic on  $0 < |z - z_0| < \delta$ .

#### Theorem 6.77.3. Casorati-Weierstrass Theorem

Suppose that  $z_0$  is an essential singularity of function f and let  $w_0$  be any complex number. Then for all  $\varepsilon > 0$ , the inequality  $|f(z) - w_0| < \varepsilon$  is satisfied at some point a in every deleted neighborhood  $0 < |z - z_0| < \delta$  of  $z_0$  for  $\delta > 0$ .

**Proof.** Let  $w_0 \in \mathbb{C}$ ,  $\varepsilon > 0$ , and  $\delta > 0$  be given where  $\delta$  is sufficiently small so that f is analytic on  $0 < |z - z_0| < \delta$ . ASSUME  $|f(z) - w_0| \ge \varepsilon$  for all z in  $0 < |z - z_0 < \delta$ . Then the function  $g(z) = 1/(f(z) - w_0)$  is analytic and bounded (by  $M = 1/\varepsilon$ ) on  $0 < |z - z_0| < \delta$  (notice that g is nonzero by the definition for these z values). So by Lemma 6.77.1,  $z_0$  is a removable singularity of g.

#### Theorem 6.77.3. Casorati-Weierstrass Theorem

Suppose that  $z_0$  is an essential singularity of function f and let  $w_0$  be any complex number. Then for all  $\varepsilon > 0$ , the inequality  $|f(z) - w_0| < \varepsilon$  is satisfied at some point a in every deleted neighborhood  $0 < |z - z_0| < \delta$  of  $z_0$  for  $\delta > 0$ .

**Proof.** Let  $w_0 \in \mathbb{C}$ ,  $\varepsilon > 0$ , and  $\delta > 0$  be given where  $\delta$  is sufficiently small so that f is analytic on  $0 < |z - z_0| < \delta$ . ASSUME  $|f(z) - w_0| \ge \varepsilon$  for all z in  $0 < |z - z_0 < \delta$ . Then the function  $g(z) = 1/(f(z) - w_0)$  is analytic and bounded (by  $M = 1/\varepsilon$ ) on  $0 < |z - z_0| < \delta$  (notice that g is nonzero by the definition for these z values). So by Lemma 6.77.1,  $z_0$  is a removable singularity of g. We extend g to be defined at  $z_0$  by setting  $g(z_0) = \lim_{z \to z_0} g(z)$ . Then g is analytic on  $|z - z_0| < \delta$  (see Note 6.72.A).

#### Theorem 6.77.3. Casorati-Weierstrass Theorem

Suppose that  $z_0$  is an essential singularity of function f and let  $w_0$  be any complex number. Then for all  $\varepsilon > 0$ , the inequality  $|f(z) - w_0| < \varepsilon$  is satisfied at some point a in every deleted neighborhood  $0 < |z - z_0| < \delta$  of  $z_0$  for  $\delta > 0$ .

**Proof.** Let  $w_0 \in \mathbb{C}$ ,  $\varepsilon > 0$ , and  $\delta > 0$  be given where  $\delta$  is sufficiently small so that f is analytic on  $0 < |z - z_0| < \delta$ . ASSUME  $|f(z) - w_0| \ge \varepsilon$  for all z in  $0 < |z - z_0 < \delta$ . Then the function  $g(z) = 1/(f(z) - w_0)$  is analytic and bounded (by  $M = 1/\varepsilon$ ) on  $0 < |z - z_0| < \delta$  (notice that g is nonzero by the definition for these z values). So by Lemma 6.77.1,  $z_0$  is a removable singularity of g. We extend g to be defined at  $z_0$  by setting  $g(z_0) = \lim_{z \to z_0} g(z)$ . Then g is analytic on  $|z - z_0| < \delta$  (see Note 6.72.A).

**Proof (continued).** If  $g(z_0) \neq 0$  then  $f(z) = \frac{1}{g(z)} + w_0$  and f is analytic where g is nonzero. Since  $g(z_0) \neq 0$  then  $g(z) \neq 0$  for  $|z - z_0| < \delta$ . But then f is analytic on  $0 < |z - z_0| < \delta$  and  $\lim_{z \to z_0} f(z) = \frac{1}{g(z_0)} + w_0$ . So from the definition of limit, there is  $\delta_1$  such that  $0 < \delta_1 < \delta$  and f is bounded on  $0 < |z - z_0| < \delta_1$ . But then, by Lemma 6.77.1, f has a removable singular point at  $z = z_0$ , not an essential singularity, a CONTRADICTION.

**Proof (continued).** If  $g(z_0) \neq 0$  then  $f(z) = \frac{1}{g(z)} + w_0$  and f is analytic where g is nonzero. Since  $g(z_0) \neq 0$  then  $g(z) \neq 0$  for  $|z - z_0| < \delta$ . But then f is analytic on  $0 < |z - z_0| < \delta$  and  $\lim_{z \to z_0} f(z) = \frac{1}{g(z_0)} + w_0$ . So from the definition of limit, there is  $\delta_1$  such that  $0 < \delta_1 < \delta$  and f is bounded on  $0 < |z - z_0| < \delta_1$ . But then, by Lemma 6.77.1, f has a removable singular point at  $z = z_0$ , not an essential singularity, a CONTRADICTION.

If  $g(z_0) = 0$  then, since g is not identically the zero function (since g is nonzero for  $0 < |z - z_0| < \delta$ ) then  $z_0$  is a zero of g of some order m (see Section 75) and so by Theorem 6.76.1 (with  $p(z) = 1 + g(z)w_0$  and q(z) = g(z)),  $f(z) = \frac{1}{g(z)} + w_0 = \frac{1+g(z)w_0}{g(z)}$  has a pole of order m at  $z_0$ , CONTRADICTING the fact that f has an essential singularity, no a pole at  $z_0$ .

**Proof (continued).** If  $g(z_0) \neq 0$  then  $f(z) = \frac{1}{g(z)} + w_0$  and f is analytic where g is nonzero. Since  $g(z_0) \neq 0$  then  $g(z) \neq 0$  for  $|z - z_0| < \delta$ . But then f is analytic on  $0 < |z - z_0| < \delta$  and  $\lim_{z \to z_0} f(z) = \frac{1}{g(z_0)} + w_0$ . So from the definition of limit, there is  $\delta_1$  such that  $0 < \delta_1 < \delta$  and f is bounded on  $0 < |z - z_0| < \delta_1$ . But then, by Lemma 6.77.1, f has a removable singular point at  $z = z_0$ , not an essential singularity, a CONTRADICTION.

If  $g(z_0) = 0$  then, since g is not identically the zero function (since g is nonzero for  $0 < |z - z_0| < \delta$ ) then  $z_0$  is a zero of g of some order m (see Section 75) and so by Theorem 6.76.1 (with  $p(z) = 1 + g(z)w_0$  and q(z) = g(z)),  $f(z) = \frac{1}{g(z)} + w_0 = \frac{1+g(z)w_0}{g(z)}$  has a pole of order m at  $z_0$ , CONTRADICTING the fact that f has an essential singularity, no a pole at  $z_0$ . So the assumption that  $|f(z) - w_0| \ge \varepsilon$  for all  $0|z - z_0| < \delta$  is false and so there must be some point z in  $0 < |z - z_0| < \delta$  such that all  $0 < |z - z_0| < \delta$  such that  $|f(z) - w_0| < \varepsilon$ , as claimed.

**Proof (continued).** If  $g(z_0) \neq 0$  then  $f(z) = \frac{1}{g(z)} + w_0$  and f is analytic where g is nonzero. Since  $g(z_0) \neq 0$  then  $g(z) \neq 0$  for  $|z - z_0| < \delta$ . But then f is analytic on  $0 < |z - z_0| < \delta$  and  $\lim_{z \to z_0} f(z) = \frac{1}{g(z_0)} + w_0$ . So from the definition of limit, there is  $\delta_1$  such that  $0 < \delta_1 < \delta$  and f is bounded on  $0 < |z - z_0| < \delta_1$ . But then, by Lemma 6.77.1, f has a removable singular point at  $z = z_0$ , not an essential singularity, a CONTRADICTION.

If  $g(z_0) = 0$  then, since g is not identically the zero function (since g is nonzero for  $0 < |z - z_0| < \delta$ ) then  $z_0$  is a zero of g of some order m (see Section 75) and so by Theorem 6.76.1 (with  $p(z) = 1 + g(z)w_0$  and q(z) = g(z)),  $f(z) = \frac{1}{g(z)} + w_0 = \frac{1+g(z)w_0}{g(z)}$  has a pole of order m at  $z_0$ , CONTRADICTING the fact that f has an essential singularity, no a pole at  $z_0$ . So the assumption that  $|f(z) - w_0| \ge \varepsilon$  for all  $0|z - z_0| < \delta$  is false and so there must be some point z in  $0 < |z - z_0| < \delta$  such that all  $0 < |z - z_0| < \delta$  such that  $|f(z) - w_0| < \varepsilon$ , as claimed.