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Theorem 115.B

Theorem 115.B. If a harmonic function u(x, y) is defined on a simply
connected domain D, it always has a harmonic conjugate v(x,y) in D.
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Theorem 115.B

Theorem 115.B. If a harmonic function u(x, y) is defined on a simply
connected domain D, it always has a harmonic conjugate v(x,y) in D.

Proof. We need another result from Advanced Calculus. We quote from
Brown and Churchill. “Suppose that P(x,y) and Q(x,y) have continuous
first-order partial derivatives in a simply connected domain D of the
xy-plane, and let (xp, y0) and (x,y) be any two points in D. If P, = Q,

everywhere in D, then the line integral /(P(s, t)ds + Q(s, t) dt) from
c

(x0, ¥0) t (x,y) is independent of the contour C that is taken as long as
the contour lies entirely in D.
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Theorem 115.B

Theorem 115.B. If a harmonic function u(x, y) is defined on a simply
connected domain D, it always has a harmonic conjugate v(x,y) in D.

Proof. We need another result from Advanced Calculus. We quote from
Brown and Churchill. “Suppose that P(x,y) and Q(x,y) have continuous
first-order partial derivatives in a simply connected domain D of the
xy-plane, and let (xp, y0) and (x,y) be any two points in D. If P, = Q,

everywhere in D, then the line integral /(P(s, t)ds + Q(s, t) dt) from
c

(x0, ¥0) t (x,y) is independent of the contour C that is taken as long as
the contour lies entirely in D. Furthermore, when the point (xg, yo) is kept
fixed and (x, y) is allowed to very throughout D, the integral represents a
single-valued function

(x:y)
Flx,y) = /( (P(s, ) ds + Q(s, £) dt)

X0,Y0)
of x and y whose first-order partial derivatives are given ...
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Theorem 115.B (continued 1)

Theorem 115.B. If a harmonic function u(x, y) is defined on a simply
connected domain D, it always has a harmonic conjugate v(x,y) in D.

Proof (continued). ...by the equations Fi(x,y) = P(x,y),

Fy(x,y) = Q(x,y)."” If a different initial point other than (xg, yo) is
chosen, then this will change F by an additive constant (the “constant of
integration).
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Theorem 115.B (continued 1)

Theorem 115.B. If a harmonic function u(x, y) is defined on a simply
connected domain D, it always has a harmonic conjugate v(x,y) in D.

Proof (continued). ...by the equations Fi(x,y) = P(x,y),

Fy(x,y) = Q(x,y)."” If a different initial point other than (xg, yo) is
chosen, then this will change F by an additive constant (the “constant of
integration).

Since u is hypothesized to be harmonic, then u, + u,, =0, or

(—uy)y = (ux)x in D. The second partials of u are continuous in D (by the
definition of “harmonic function”), so the first-order partial derivatives of
u are continuous. With (xo, yo) as a fixed point in D, by the result above
(with P(s,t) = —ue(s, t) and Q(s,t) = us(s, t)) we have that the function

(x.¥)
v(x,y) = /( (—ue(s, t) ds + us(s, £) dt)

X0,%0)
is well defined for all (x,y) in D.
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Theorem 115.B (continued 2)

Theorem 115.B. If a harmonic function u(x,y) is defined on a simply
connected domain D, it always has a harmonic conjugate v(x,y) in D.

Proof (continued). With F(x,y) = v(x,y), we also have by the above
result that vi(x,y) = —uy(x,y) and v,(x,y) = ux(x, y). So this means u
and v satisfy the Cauchy-Riemann equations. Since the first-order partials
of u are continuous, then the Cauchy-Riemann equations imply that the
first-order partial derivatives of v are also continuous.
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Theorem 115.B (continued 2)

Theorem 115.B. If a harmonic function u(x, y) is defined on a simply
connected domain D, it always has a harmonic conjugate v(x,y) in D.

Proof (continued). With F(x,y) = v(x,y), we also have by the above
result that vi(x,y) = —uy(x,y) and v,(x,y) = ux(x, y). So this means u
and v satisfy the Cauchy-Riemann equations. Since the first-order partials
of u are continuous, then the Cauchy-Riemann equations imply that the
first-order partial derivatives of v are also continuous. Now by Theorem
2.22.A, "The Cauchy-Riemann Equations and Continuity Imply
Differentiability,” u(x,y) -+ iv(x,y) is an analytic function in D, and so v
is a harmonic conjugate of u, as claimed. We can also add and constant C
to v(x,y), to get v(x,y) + C as another harmonic conjugate of u (this
just corresponds to a different choice of point (xo, yp) in the integral
above). O
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