#### **Complex Variables**

**Chapter 9. Conformal Mapping** 

Section 116. Transformations of Harmonic Functions—Proofs of Theorems



# Table of contents





## Theorem 116.A

#### Theorem 116.A. Suppose that

(a) an analytic function w = f(z) = u(x, y) + iv(x, y) maps a domain D<sub>z</sub> in the z plane onto a domain D<sub>w</sub> in the w plane;
(b) h(u, v) is a harmonic function defined on D<sub>w</sub>.
It follows that the function H(x, y) = h[(u(x, y), v(x, y)] is harmonic in D<sub>z</sub>.

**Proof.** Recall that a domain is, by definition, a nonempty connected open set. First, suppose domain  $D_w$  is simply connected. By Theorem 115.B, harmonic function h(u, v) has a harmonic conjugate g(u, v). So by Theorem 2.26.1/115.A the function  $\Phi(w) = h(u, v) + ig(u, v)$  is analytic in  $D_w$ . Since function f is analytic in  $D_z$ , the composite function  $\Phi(f(z))$  is also analytic in  $D_z$ . Also by Theorem 2.26.1/115.A, the real part of  $\Phi(f(z))$ , h(u(x, y), v(x, y)), is harmonic in  $D_z$ , as claimed.

## Theorem 116.A

#### Theorem 116.A. Suppose that

(a) an analytic function w = f(z) = u(x, y) + iv(x, y) maps a domain D<sub>z</sub> in the z plane onto a domain D<sub>w</sub> in the w plane;
(b) h(u, v) is a harmonic function defined on D<sub>w</sub>.
It follows that the function H(x, y) = h[(u(x, y), v(x, y)] is harmonic in

 $D_z$ .

**Proof.** Recall that a domain is, by definition, a nonempty connected open set. First, suppose domain  $D_w$  is simply connected. By Theorem 115.B, harmonic function h(u, v) has a harmonic conjugate g(u, v). So by Theorem 2.26.1/115.A the function  $\Phi(w) = h(u, v) + ig(u, v)$  is analytic in  $D_w$ . Since function f is analytic in  $D_z$ , the composite function  $\Phi(f(z))$  is also analytic in  $D_z$ . Also by Theorem 2.26.1/115.A, the real part of  $\Phi(f(z))$ , h(u(x, y), v(x, y)), is harmonic in  $D_z$ , as claimed.

### Theorem 116.A (continued)

**Proof (continued).** Second, suppose domain  $D_w$  is not simply connected. Since  $D_w$  is open, then by Exercise 1.12.6, every point is an interior point so that for any point  $w_0 \in D_w$  there is  $\varepsilon > 0$  such that the neighborhood of  $w_0$ ,  $N_{w_0} = \{ w \in \mathbb{C} \mid |w - w_0| < \varepsilon \}$ , lies entirely in  $D_w$ . Since that neighborhood  $N_{w_0}$  of  $w_0$  is simply connected, there is a function of the type  $\Phi(w) = h(u, v) + ig(u, v)$  analytic in  $N_{w_0}$ . Since f is continuous at  $z_0 \in D_z$  and  $f(z_0) = w_0$ , then by the definition of continuity, there is a neighborhood of  $z_0$ ,  $N_{z_0} = \{z \in \mathbb{C} \mid |z - z_0| < \delta\}$ , whose image is contained in  $N_{w_0} = \{ w \in \mathbb{C} \mid |w - w_0| < \varepsilon \}$ . So by the first part of the proof (with  $D_w$  there replaced with  $N_{wo}$  here), we have that h[(x, y), v(x, y)] is analytic on  $N_{z_0}$ . Since  $w_0$  is an arbitrary point of  $D_w$ and since  $D_z$  is mapped onto  $D_w$  by w = f(z) by hypothesis, then the function h(u(x, y), v(x, y)) is harmonic through  $D_z$ .

### Theorem 116.A (continued)

**Proof (continued).** Second, suppose domain  $D_w$  is not simply connected. Since  $D_w$  is open, then by Exercise 1.12.6, every point is an interior point so that for any point  $w_0 \in D_w$  there is  $\varepsilon > 0$  such that the neighborhood of  $w_0$ ,  $N_{w_0} = \{ w \in \mathbb{C} \mid |w - w_0| < \varepsilon \}$ , lies entirely in  $D_w$ . Since that neighborhood  $N_{w_0}$  of  $w_0$  is simply connected, there is a function of the type  $\Phi(w) = h(u, v) + ig(u, v)$  analytic in  $N_{w_0}$ . Since f is continuous at  $z_0 \in D_z$  and  $f(z_0) = w_0$ , then by the definition of continuity, there is a neighborhood of  $z_0$ ,  $N_{z_0} = \{z \in \mathbb{C} \mid |z - z_0| < \delta\}$ , whose image is contained in  $N_{w_0} = \{ w \in \mathbb{C} \mid |w - w_0| < \varepsilon \}$ . So by the first part of the proof (with  $D_w$  there replaced with  $N_{wo}$  here), we have that h[(x, y), v(x, y)] is analytic on  $N_{z_0}$ . Since  $w_0$  is an arbitrary point of  $D_w$ and since  $D_z$  is mapped onto  $D_w$  by w = f(z) by hypothesis, then the function h(u(x, y), v(x, y)) is harmonic through  $D_z$ .