Complex Variables

Chapter 9. Conformal Mapping

Section 117. Transformations of Boundary Conditions—Proofs of Theorems

Table of contents

(1) Theorem 117.A

Theorem 117.A

Theorem 117.A. Suppose that
(a) a transformation $w=f(z)=u(x, y)+i v(x, y)$ is conformal at each point of a smooth arc C and that Γ is the image of C under that transformation;
(b) $h(u, v)$ is a function that satisfies one of the conditions $h=h_{0}$ and $d h / d n=0$ at points on Γ, where h_{0} is a real constant and $d h / d n$ denotes the directional derivatives of h normal to Γ.
It follows that the function $H(x, y)=h[(u(x, y), v(x, y)]$ satisfies the corresponding condition $H=h_{0}$ or $d H / d N=0$ at points on C, where $d H / d N$ denotes directional derivatives of H normal to C.

Proof. First, suppose that $h=h_{0}$ on Г. Since
$H(x, y)=h[u(x, y), v(x, y)]$ and $(x, y) \in C$ implies $(u(x, y), v(x, y)) \in \Gamma$,
then $h=h(u, v)=h_{0}$ on 「 implies $H(x, y)=h[u(x, y), v(x, y)]=h_{0}$ for

Theorem 117.A

Theorem 117.A. Suppose that
(a) a transformation $w=f(z)=u(x, y)+i v(x, y)$ is conformal at each point of a smooth arc C and that Γ is the image of C under that transformation;
(b) $h(u, v)$ is a function that satisfies one of the conditions $h=h_{0}$ and $d h / d n=0$ at points on Γ, where h_{0} is a real constant and $d h / d n$ denotes the directional derivatives of h normal to Γ.
It follows that the function $H(x, y)=h[(u(x, y), v(x, y)]$ satisfies the corresponding condition $H=h_{0}$ or $d H / d N=0$ at points on C, where $d H / d N$ denotes directional derivatives of H normal to C.

Proof. First, suppose that $h=h_{0}$ on Γ. Since $H(x, y)=h[u(x, y), v(x, y)]$ and $(x, y) \in C$ implies $(u(x, y), v(x, y)) \in \Gamma$, then $h=h(u, v)=h_{0}$ on 「 implies $H(x, y)=h[u(x, y), v(x, y)]=h_{0}$ for $(x, y) \in C$, as claimed.

Theorem 117.A (continued 1)

Proof (continued). Second, suppose $d h / d n=0$ on Γ. With \mathbf{n} as a two dimensional unit vector normal to Γ at (u, v), we have by Note 117.A that the directional derivative of h at point (u, v) is $d h / d n=(\nabla h) \cdot \mathbf{n}$. Since by hypothesis $d h / d n=0$ at (u, v), then we see that either $\nabla h=\mathbf{0}$ (which we deal with in Note 117.B) or ∇h is orthogonal to \mathbf{n} at (u, v) (so that the dot product is 0). Since \mathbf{n} is normal to Γ, then \mathbf{n} is tangent to Γ (see Figure 151, right).

FIGURE 151

Theorem 117.A (continued 1)

Proof (continued). But gradients of f are orthogonal to level curves of f (defined by $f(x, y)=k$ for some constant k) by Theorem 14.5.B in my online notes for Calculus 3 (MATH 2110) on Section 14.5. Directional Derivatives and Gradient Vectors. Since ∇h is tangent to Γ and orthogonal to level curves, then the level curve $h(u, v)=c$ passing through (u, v) must be orthogonal to Γ. The level curve $H(x, y)=c$ in the z plane can be written as $H(x, y)=h[u(x, y), v(x, y)]=c$. Now C is transformed onto Γ by $w=f(z)$ by hypothesis, and Γ is orthogonal to level curve $h(u, v)=c$ (as shown above), so by the (hypothesized) conformality of f we have that C is orthogonal to the level curve $H(x, y)=c$ at the point (x, y) corresponding to point (u, v).

Theorem 117.A (continued 1)

Proof (continued). But gradients of f are orthogonal to level curves of f (defined by $f(x, y)=k$ for some constant k) by Theorem 14.5.B in my online notes for Calculus 3 (MATH 2110) on Section 14.5. Directional Derivatives and Gradient Vectors. Since ∇h is tangent to Γ and orthogonal to level curves, then the level curve $h(u, v)=c$ passing through (u, v) must be orthogonal to Γ. The level curve $H(x, y)=c$ in the z plane can be written as $H(x, y)=h[u(x, y), v(x, y)]=c$. Now C is transformed onto Γ by $w=f(z)$ by hypothesis, and Γ is orthogonal to level curve $h(u, v)=c$ (as shown above), so by the (hypothesized) conformality of f we have that C is orthogonal to the level curve $H(x, y)=c$ at the point (x, y) corresponding to point (u, v). Since gradients are orthogonal to level curves, ∇H is tangent to C at (x, y) (see Figure 151 left, above). With \mathbf{N} as a unit vector normal to C at point $(x, y), \nabla H$ is orthogonal to \mathbf{N} (Figure 151 left again). Hence, $(\nabla H) \cdot \mathbf{N}=0$ at points on \mathbf{C}. Now the directional derivative $d H / d N=(\nabla H) \cdot N$, so we have $d H / d N=0$ at points (x, y) on C.

Theorem 117.A (continued 1)

Proof (continued). But gradients of f are orthogonal to level curves of f (defined by $f(x, y)=k$ for some constant k) by Theorem 14.5.B in my online notes for Calculus 3 (MATH 2110) on Section 14.5. Directional Derivatives and Gradient Vectors. Since ∇h is tangent to Γ and orthogonal to level curves, then the level curve $h(u, v)=c$ passing through (u, v) must be orthogonal to Γ. The level curve $H(x, y)=c$ in the z plane can be written as $H(x, y)=h[u(x, y), v(x, y)]=c$. Now C is transformed onto Γ by $w=f(z)$ by hypothesis, and Γ is orthogonal to level curve $h(u, v)=c$ (as shown above), so by the (hypothesized) conformality of f we have that C is orthogonal to the level curve $H(x, y)=c$ at the point (x, y) corresponding to point (u, v). Since gradients are orthogonal to level curves, ∇H is tangent to C at (x, y) (see Figure 151 left, above). With \mathbf{N} as a unit vector normal to C at point $(x, y), \nabla H$ is orthogonal to \mathbf{N} (Figure 151 left again). Hence, $(\nabla H) \cdot \mathbf{N}=0$ at points on C. Now the directional derivative $d H / d N=(\nabla H) \cdot \mathbf{N}$, so we have $d H / d N=0$ at points (x, y) on C.

