Complex Variables

Chapter 9. Conformal Mapping Section 117. Transformations of Boundary Conditions—Proofs of Theorems

Table of contents

Theorem 117.A

Theorem 117.A. Suppose that

- (a) a transformation w = f(z) = u(x, y) + iv(x, y) is conformal at each point of a smooth arc C and that Γ is the image of C under that transformation;
- (b) h(u, v) is a function that satisfies one of the conditions $h = h_0$ and dh/dn = 0 at points on Γ , where h_0 is a real constant and dh/dn denotes the directional derivatives of hnormal to Γ .

It follows that the function H(x, y) = h[(u(x, y), v(x, y)] satisfies the corresponding condition $H = h_0$ or dH/dN = 0 at points on *C*, where dH/dN denotes directional derivatives of *H* normal to *C*.

Proof. First, suppose that $h = h_0$ on Γ . Since H(x, y) = h[u(x, y), v(x, y)] and $(x, y) \in C$ implies $(u(x, y), v(x, y)) \in \Gamma$, then $h = h(u, v) = h_0$ on Γ implies $H(x, y) = h[u(x, y), v(x, y)] = h_0$ for $(x, y) \in C$, as claimed.

Theorem 117.A

Theorem 117.A. Suppose that

- (a) a transformation w = f(z) = u(x, y) + iv(x, y) is conformal at each point of a smooth arc C and that Γ is the image of C under that transformation;
- (b) h(u, v) is a function that satisfies one of the conditions $h = h_0$ and dh/dn = 0 at points on Γ , where h_0 is a real constant and dh/dn denotes the directional derivatives of hnormal to Γ .

It follows that the function H(x, y) = h[(u(x, y), v(x, y)] satisfies the corresponding condition $H = h_0$ or dH/dN = 0 at points on C, where dH/dN denotes directional derivatives of H normal to C.

Proof. First, suppose that $h = h_0$ on Γ . Since H(x, y) = h[u(x, y), v(x, y)] and $(x, y) \in C$ implies $(u(x, y), v(x, y)) \in \Gamma$, then $h = h(u, v) = h_0$ on Γ implies $H(x, y) = h[u(x, y), v(x, y)] = h_0$ for $(x, y) \in C$, as claimed.

Proof (continued). Second, suppose dh/dn = 0 on Γ . With **n** as a two dimensional unit vector normal to Γ at (u, v), we have by Note 117.A that the directional derivative of h at point (u, v) is $dh/dn = (\nabla h) \cdot \mathbf{n}$. Since by hypothesis dh/dn = 0 at (u, v), then we see that either $\nabla h = \mathbf{0}$ (which we deal with in Note 117.B) or ∇h is orthogonal to **n** at (u, v) (so that the dot product is 0). Since **n** is normal to Γ , then **n** is tangent to Γ (see Figure 151, right).

Proof (continued). But gradients of *f* are orthogonal to level curves of *f* (defined by f(x, y) = k for some constant k) by Theorem 14.5.B in my online notes for Calculus 3 (MATH 2110) on Section 14.5. Directional **Derivatives and Gradient Vectors.** Since ∇h is tangent to Γ and orthogonal to level curves, then the level curve h(u, v) = c passing through (u, v) must be orthogonal to Γ . The level curve H(x, y) = c in the z plane can be written as H(x, y) = h[u(x, y), v(x, y)] = c. Now C is transformed onto Γ by w = f(z) by hypothesis, and Γ is orthogonal to level curve h(u, v) = c (as shown above), so by the (hypothesized) conformality of f we have that C is orthogonal to the level curve H(x, y) = c at the point (x, y) corresponding to point (u, v).

Proof (continued). But gradients of *f* are orthogonal to level curves of *f* (defined by f(x, y) = k for some constant k) by Theorem 14.5.B in my online notes for Calculus 3 (MATH 2110) on Section 14.5. Directional **Derivatives and Gradient Vectors.** Since ∇h is tangent to Γ and orthogonal to level curves, then the level curve h(u, v) = c passing through (u, v) must be orthogonal to Γ . The level curve H(x, y) = c in the z plane can be written as H(x, y) = h[u(x, y), v(x, y)] = c. Now C is transformed onto Γ by w = f(z) by hypothesis, and Γ is orthogonal to level curve h(u, v) = c (as shown above), so by the (hypothesized) conformality of f we have that C is orthogonal to the level curve H(x, y) = c at the point (x, y) corresponding to point (u, v). Since gradients are orthogonal to level curves, ∇H is tangent to C at (x, y) (see Figure 151 left, above). With **N** as a unit vector normal to C at point $(x, y), \nabla H$ is orthogonal to **N** (Figure 151 left again). Hence, $(\nabla H) \cdot \mathbf{N} = 0$ at points on C. Now the directional derivative $dH/dN = (\nabla H) \cdot \mathbf{N}$, so we have dH/dN = 0 at points (x, y) on C.

Proof (continued). But gradients of f are orthogonal to level curves of f (defined by f(x, y) = k for some constant k) by Theorem 14.5.B in my online notes for Calculus 3 (MATH 2110) on Section 14.5. Directional **Derivatives and Gradient Vectors.** Since ∇h is tangent to Γ and orthogonal to level curves, then the level curve h(u, v) = c passing through (u, v) must be orthogonal to Γ . The level curve H(x, y) = c in the z plane can be written as H(x, y) = h[u(x, y), v(x, y)] = c. Now C is transformed onto Γ by w = f(z) by hypothesis, and Γ is orthogonal to level curve h(u, v) = c (as shown above), so by the (hypothesized) conformality of f we have that C is orthogonal to the level curve H(x, y) = c at the point (x, y) corresponding to point (u, v). Since gradients are orthogonal to level curves, ∇H is tangent to C at (x, y) (see Figure 151 left, above). With **N** as a unit vector normal to C at point $(x, y), \nabla H$ is orthogonal to **N** (Figure 151 left again). Hence, $(\nabla H) \cdot \mathbf{N} = 0$ at points on C. Now the directional derivative $dH/dN = (\nabla H) \cdot \mathbf{N}$, so we have dH/dN = 0 at points (x, y) on C.