Section 1.10. Examples

Example 1.10.1. Find three cube roots of $-8 i$. Notice that Brown and Churchill denote the as $(-8 i)^{1 / 3}$, but we should be careful because this should not be confused with the cube root function (since a function is, by definition, single valued).

Solution. First notice that $-8 i=8 \exp (i(-\pi / 2))=8 \exp (i(-\pi / 2+2 k \pi))$ for $k \in \mathbb{Z}$. So

$$
\left.c_{k}=\sqrt[3]{8} \exp (i(-\pi / 2+2 k \pi) / 3)\right)=\sqrt[3]{8} \exp (i(-\pi / 6+2 k \pi / 3))
$$

for $k \in \mathbb{Z}$. We then have
$c_{0}=2 \exp (i(-\pi / 6))=2(\sqrt{3} / 2+i(-1 / 2))=\sqrt{3}-i$
$c_{1}=2 \exp (i(-\pi / 6+2 \pi / 3))=2 \exp (i(\pi / 2))=2(0+i(1))=2 i$
$c_{2}=2 \exp (i(-\pi / 6+4 \pi / 3))=2 \exp (i(7 \pi / 6))=2(-\sqrt{3} / 2+i(-1 / 2))=-\sqrt{3}-i$.

We then have geometrically that c_{0}, c_{1}, and c_{2} are as seen in Figure 12 .

FIGURE 12

Example 1.10.2. We have already stated that the distinct nth roots of unity are $\omega_{n}^{k}=s_{k}=\exp (i(2 k \pi / n))$ for $k=0,1, \ldots, n-1$. Figure 13 shows the location of the cube roots, 4 th roots, and 6 th roots of unity.

FIGURE 13

