Section 1.2. Basic Algebraic Properties

Note. We use several algebraic properties of the real numbers to verify corresponding properties of complex numbers. As we should in a course at this level, we give the results in a theorem/proof format.

Theorem 1.2.1. For any $z_{1}, z_{2}, z_{3} \in \mathbb{C}$ we have the following.

1. Commutivity of addition and multiplication:

$$
z_{1}+z_{2}=z_{2}+z_{1} \text { and } z_{1} z_{2}=z_{2} z_{1} .
$$

2. Associativity of addition and multiplication:

$$
\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right) \text { and }\left(z_{1} z_{2}\right) z_{3}=z_{1}\left(z_{2} z_{3}\right) .
$$

3. Distribution of multiplication over addition:

$$
z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3} .
$$

4. There is an additive identity $0=0+i 0$ such that $0+z=z$ for all $z \in \mathbb{C}$. There is a multiplicative identity $1=1+i 0$ such that $z 1=z$ for all $z \in \mathbb{C}$. Also, $z 0=0$ for all $z \in \mathbb{C}$.
5. For each $z \in \mathbb{C}$ there is $z^{\prime} \in \mathbb{C}$ such that $z^{\prime}+z=0 . z^{\prime}$ is the additive inverse of z (denoted $-z$). If $z \neq 0$, then there is $z^{\prime \prime} \in \mathbb{C}$ such that $z^{\prime \prime} z=1 . z^{\prime \prime}$ is the multiplicative inverse of z (denoted $\left.z^{-1}\right)$.

Note. In Exercise 1.2.8, you will show that the additive and multiplicative identities are unique (so are the additive and multiplicative inverses of a given $z \in \mathbb{C}$).

Corollary 1.2.2. For $z_{1}, z_{2}, z_{3} \in \mathbb{C}$ if $z_{1} z_{2}=0$ then either $z_{1}=0$ or $z_{2}=0$. That is, \mathbb{C} has no "zero divisors."

Note 1.2.A. When we consider division it is, by definition, multiplication by the multiplicative inverse. So for $z \neq 0, z^{-1}$ is denoted $1 / z$ and so z_{1} / z_{2} means $z_{1} z_{2}^{-1}$. We see in the proof of Theorem 1.2.1(5) that for $z=x+i y$,

$$
z^{-1}=\frac{1}{z}=\frac{x}{x^{2}+y^{2}}+i \frac{-y}{x^{2}+y^{2}} .
$$

So by the definition of multiplication in \mathbb{C}, for $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2} \neq 0$ we have

$$
z_{1} z_{2}^{-1}=\frac{z_{1}}{z_{2}}=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}+i \frac{y_{1} x_{2}-x_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}} .
$$

When we introduce moduli in Section 1.4 and complex conjugates in Section 1.5 we will have more streamlined and easy-to-remember formulas.

