Section 1.3. Further Properties

Note. In this brief section, we introduce a few formulas (as lemmas) and the Binomial Theorem.

Lemma 1.3.1. For any $z_{1}, z_{2}, z_{3} \in \mathbb{C}$, with $z_{3} \neq 0$, we have

$$
\frac{z_{1}}{z_{3}}+\frac{z_{2}}{z_{3}}=\frac{z_{1}+z_{2}}{z_{3}} .
$$

Note. Lemma 1.3.1 deals with addition of quotients and "common denominators." The following relates inverses and products ("the products of inverses is the inverse of the products").

Lemma 1.3.2. If $z_{1}, z_{2} \in \mathbb{C}$, with $z_{1} \neq 0, z_{2} \neq 0$, then

$$
\left(\frac{1}{z_{1}}\right)\left(\frac{1}{z_{2}}\right)=\frac{1}{z_{1} z_{2}}
$$

or equivalently, $z_{1}^{-1} z_{2}^{-1}=\left(z_{1} z_{2}\right)^{-1}$.

Theorem 1.3.2. The Binomial Theorem.

For any $z_{1}, z_{2}, z_{3} \in \mathbb{C}$ and $n \in \mathbb{N}=\{1,2,3, \ldots\}$ (the natural numbers) we have

$$
\left(z_{1}+z_{2}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} z_{1}^{n} z_{2}^{n-k}
$$

where

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1)(n-2) \cdots(n-k+1)!}{k(k-1)(k-2) \cdots(3)(2)(1)}
$$

and $0!=1$ (by definition).

Note. You are asked to prove the Binomial Theorem in Exercise 1.3.8 using Mathematical Induction. This is similar to the proof you likely saw in Mathematical Reasoning (MATH 3000).

