Section 1.5. Complex Conjugates

Note. In this section, we introduce a useful operation on a complex number with an easy geometric interpretation.

Definition. The complex conjugate (or simply conjugate) of $z=x+i y$ is $\bar{z}=x-i y$.

Note. In the complex plane, \bar{z} is the mirror image of z about the real axis (the " x-axis").

FIGURE 5

Theorem 1.5.1. For all $z_{1}, z_{2} \in \mathbb{C}$ we have

$$
\begin{array}{rlrl}
\overline{z_{1}+z_{2}} & =\bar{z}_{1}+\bar{z}_{2} & \overline{z_{1}-z_{2}} & =\bar{z}_{1}-\bar{z}_{2} \\
\overline{z_{1} z_{2}} & =\bar{z}_{1} \bar{z}_{2} & \overline{z_{1} / z_{2}} & =\bar{z}_{1} / \bar{z}_{2} \\
\operatorname{Re}(z)=(z+\bar{z}) / 2 & \operatorname{Im}(z)=(z-\bar{z}) /(2 i)
\end{array}
$$

Note 1.5.A. Since with $z=x+i y$ we have $|z|^{2}=|x+i y|^{2}=x^{2}+y^{2}=(x+$ $i y)(x-i y)=z \bar{z}$, then the conjugate gives us a concise way to express the modulus and reciprocal of $z \in \mathbb{C}$:

$$
|z|^{2}=z \bar{z} \text { and } \frac{1}{z}=\frac{\bar{z}}{|z|^{2}}
$$

Theorem 1.5.2. For all $z_{1}, z_{2} \in \mathbb{C}$ we have

$$
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \text { and }\left|\frac{z_{1}}{z_{2}}\right|=\left|z_{1}\right| /\left|z_{2}\right|(\text { for } z \neq 0)
$$

Revised: 1/22/2024

