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Section 1.6. Exponential Form

Note. Recall that a point (x, y) ∈ R2 can be represented by polar coordinates

(r, θ) where r2 = x2 + y2 and tan θ = y/x for x 6= 0; x = r cos θ and y = r sin θ.

Similarly, we represent z ∈ C, z 6= 0, in “polar form” z = r(cos θ + i sin θ). It is

traditional in complex analysis to take r = |z| > 0 (as opposed to the R2 setting

where r may be 0 or negative; this is the convention in Calculus 3 [MATH 2110],

as seen in my online notes for that class on Section 11.3. Polar Coordinates).

Definition. For z ∈ C, z 6= 0, if z = r(cos θ + i sin θ) where r = |z|, then any θ

satisfying the equation is an argument of z. The set of all arguments z is denoted

arg(z) = {θ ∈ R | z = r(cos θ+ i sin θ)}. The principal value of arg(z) is the unique

θ ∈ arg(z) such that −π < θ ≤ π and is denoted Arg(z).

Note. We then have for any z ∈ C, z 6= 0, that arg(z) = Arg(z) + 2nπ where

n ∈ Z. The choice of the principal value of the argument is not universal and it is
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sometimes chosen to be in [0, 2π). This will have an effect when we define principal

square roots, for example.

Definition. We define Euler’s formula as eiθ = cos θ + i sin θ.

Note. The polar form of z ∈ C, z 6= 0, can be expressed using Euler’s formula as

z = reiθ where r = |z| and θ ∈ arg(z). This is called the exponential form of z. For

now, Euler’s formula is just a notation. In Section 29, it will be better motivated.

For now, consider the following argument.
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We have not defined “absolute convergence” nor do we have any theory of series in

the complex setting. Once we do, this computation can be justified.

Note. The set of complex numbers of the form z = eiθ is the set of all complex

numbers of modulus 1, |z| = 1. With θ = π, we get the popular t-shirt equation

eiπ = −1. Notice that we also have eiπ/2 = i and ei3π/2 = −i. See Figure 7.

Note. In general, the circle {z | z ∈ C, |z| = R} can be expressed in exponential

form as z = Reiθ where θ ranges over (−π, π]. The circle with center z0 and radius

R is then of the form z = z0 + Reiθ where θ ∈ (−π, π]. See Figure 8.
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