Section 1.9. Roots of Complex Numbers

Note. We now use the results of the previous two sections to find nth roots of complex numbers. In \mathbb{R}, there are two "choices" for a square root of x when $x>0$ (a positive square root and a negative square root). This problem is compounded in the complex setting by the fact that there are n "choices" for the nth root of a nonzero complex number.

Note. You may have seen " nth roots of unity" in Introduction to Modern Algebra (MATH 4127/5127; see my online class notes on I. Groups and Subgroups, Section 1. Introduction and Examples.). The nth roots of unity form a cyclic group of order n under multiplication.

Note 1.9.A. Since the function $e^{i \theta}$ is a periodic function in θ with period 2π (in fact, as a function of θ graphed in the complex plane, this function traces out the unit circle $|z|=1$). So if $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$ (where $r_{1}>0$ and $r_{2}>0$) then $z_{1}=z_{2}$ if and only if $r_{1}=r_{2}$ and $\theta_{1}=\theta_{2}+2 k \pi$ for some $k \in \mathbb{Z}$.

Note 1.9.B. Suppose $z_{0}=r_{0} e^{i \theta_{0}}$ and $z^{n}=z_{0}$ where $z=r e^{i \theta}$. Then it must be that $z^{n}=r^{n} e^{i n \theta}=z_{0}=r_{0} e^{i \theta_{0}}$ and so $r^{n}=r_{0}$ and $n \theta=\theta_{0}+2 k \pi$ for some $k \in \mathbb{Z}$. So we must have $r=\sqrt[n]{r_{0}}$ and $\theta=\left(\theta_{0}+2 k \pi\right) / n$ for $k \in \mathbb{Z}$. Therefore, the nth roots of z_{0} are $z=\sqrt[n]{r_{0}} \exp \left(i\left(\theta_{0}+2 k \pi\right) / n\right)$ for $k \in \mathbb{Z}$. However, since $\exp (i \theta)$ is periodic,
there are in fact only n distinct nth roots of z_{0}. Namely

$$
c_{k}=\sqrt[n]{r_{0}} \exp \left(i \frac{\theta_{0}+2 k \pi}{n}\right) \text { for } k=0,1, \ldots, n-1
$$

With $n \geq 3$, the roots lie at the vertices of a regular n-gon inscribed in a circle of radius $\sqrt[n]{r}$ and centered at 0 (we'll have illustrations of this in the next section). When θ_{0} is the principal argument of z then c_{0} is the principal nth root of z.

Note 1.9.C. If $z=1=1 e^{i 0}$, we get the " nth roots of unity"

$$
\omega_{n}^{k}=\exp \left(i \frac{2 k \pi}{n}\right) \text { for } k=0,1, \ldots, n-1
$$

Notice that $\omega_{n}^{1}=\exp (i 2 \pi / n)$ can be used to generate each of the other nth roots of unity: $\omega_{n}^{k}=\left(\omega_{n}^{1}\right)^{k}$. This is how we can form a cyclic group out of the nth roots of unity and ω_{n}^{1} is a generator of this cyclic group (which is isomorphic to $\left\langle\mathbb{Z}_{n},+\right\rangle$).

