
118. Steady Temperatures 1

Chapter 10. Applications of Conformal

Mapping

Note. In this chapter, we consider applications of the conformal mappings intro-

duced in Chapter 9. We use such mappings to solve applied problems involving

Laplace’s equation, which we stated in Section 2.26. Harmonic Functions (namely,

Hxx(x, y) + Hyy(x, y) = 0). We consider applications involving temperature, elec-

trostatic potential, and fluid flow.

Section 118. Steady Temperatures

Note. In this section, we consider the amount of heat energy (as measured by

temperature) distributed in a two-dimensional plate when it has reached an equi-

librium. In Applied Mathematics 2 (MATH 5620), or maybe a senior level partial

differential equation (“PDE”) class, you might see that the temperature distribu-

tion T (x, y, t) at point (x, y) at time t satisfies cρTt = κ(Txx + Tyy) where c is the

specific heat and ρ is the density of the material involved (both constants), and κ is

the heat conductivity (a constant) of the material. See my online notes for Applied

Mathematics 2 on Section 1.3. Flows, Vibrations, and Diffusions for a derivation of

this PDE in the three-dimensional setting (the derivation there concerns the more

physically realistic three spatial dimensions case). Since we are considering “steady

temperatures,” the we have no change of T (x, y) with time, so the PDE simplifies

to Laplace’s equation: Txx(x, y) + Tyy(x, y) = 0.

https://faculty.etsu.edu/gardnerr/5337/notes/Chapter2-26.pdf
https://faculty.etsu.edu/gardnerr/5610/Strauss-notes/Strauss-1-3.pdf
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Note/Defintion. Brown and Churchill also describe a three-dimensional heat

conduction problem, but then assume no dependence in the third dimension. The

flow of heat across a surface in a solid body at a point on the surface is called

flux. The quantity of heat that flows in a specified direction normal to the surface

per unit time per unit area has units of, for example, calories/(second2 cm2)).

We denote flux as Φ. With N as a normal vector to the surface (as a function

of the coordinates of the points on the surface), we have that the flux satisfies

Φ = −K
dT

dN
, where K is a positive constant called the thermal conductivity of the

material involved. This relationship is called Fourier’s Law.

Note. As Brown and Churchill state on page 366:

“. . . we restrict out attention to those cases in which the temperature T

varies with only the x and y coordinates. . . . the flow of heat is, then,

two dimensional and parallel to [the plane containing the plate]. We

agree, moreover, that the flow is in a steady state; that is, T does not

vary with time.”

In addition, we assume that there are no heat sources or sinks within the plate.

The temperature function T (x, y) and its first and second partial derivatives are

assumed to be continuous on the interior of the plate. In this way, the equilibrium

temperature distribution T (x, y) will be determined by Laplace’s equation (i.e., the

PDE) and the temperature along the boundary (i.e., the boundary values).

Note 118.A. We now give a heuristic argument that Laplace’s equation gives a

condition on the temperature distribution function T (x, y) when the temperature
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has reached equilibrium. Consider a small rectangular area of dimensions ∆x by

∆y in the region on which T (x, y) is defined; see Figure 154.

The flow of heat through the left-hand side of the rectangle, by Fourier’s law, is

−KTx(x, y)∆y where K is the thermal conductivity, Tx(x, y) is the rate of change

of T in the positive x direction (at the point (x, y); we are using this value to

approximate the flow of temperature across all of the left-hand edge), and ∆y is the

length of the left-hand edge. Similarly, the flow of heat through the right-hand side

of the rectangle (a distance of ∆x from the left-hand side) is = KTx(x+∆x, y)∆y.

The first term represents heat entering the rectangle from the left and the second

term represents heat leaving the rectangle towards the right (though these could

be negative themselves), so the net rate of heat loss through the two vertical sides

of the rectangle is the second term minus the first:

(−KTx(x+∆x, y)∆y)−(−KTx(x, y)∆y) = −K

[
Tx(x + ∆x, y)− Tx(x, y)

∆x

]
∆x∆y.

A similar argument involving the top and bottom sides of the rectangle gives that

the net rate of heat loss through these sides is

(−KTy(x, y+∆y)∆x)−(−KTy(x, y)∆x) = −K

[
Ty(x, y + ∆y)− Ty(x, y)

∆y

]
∆x∆y.

Since we are considering a steady temperature case (when temperature equilibrium
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has been reached in the plate), the total net flow of heat must be 0. That is,(
−K

[
Tx(x + ∆x, y)− Tx(x, y)

∆x

]
∆x∆y

)
+

(
−K

[
Ty(x, y + ∆y)− Ty(x, y)

∆y

]
∆x∆y

)
= 0,

or (dividing out −K∆x∆y)

Tx(x + ∆x, y)− Tx(x, y)

∆x
+

Ty(x, y + ∆y)− Ty(x, y)

∆y
= 0.

Now taking limits as ∆x → 0 and ∆y → 0, we get second partial derivatives

and Laplace’s formula: Txx(x, y) + Tyy(x, y) = 0. Notice that this must hold on

the interior of the region defining the plate. We now see that T (x, y) must be a

harmonic function on the interior of the region.

Definition. The level curves T (x, y) = c1 where c1 is any real constant (Brown

and Churchill calls these “surfaces”) are isotherms.

Note/Definition. As seen in Calculus 3 (MATH 2110), the gradient of function

f(x, y) at a point (x0, y0) is normal to the level curve of f which passes through

(x0, y0). See my online notes for that class on Section 14.5. Directional Derivatives

and Gradient Vectors and notice Theorem 14.5.B. For T (x, y) satisfying Laplace’s

equation and S(x, y) a harmonic conjugate of T , the level curve S(x, y) = c2 has

the gradient of T as a tangent vector at each point where the analytic function

T (x, y) + iS(s, y) is conformal (as is shown in Exercise 2.27.2). So level curve

S(x, y) = c2 is called a line of flow, since it reflects the path along which heat

flows.

https://faculty.etsu.edu/gardnerr/2110/notes-12e/c14s5.pdf
https://faculty.etsu.edu/gardnerr/2110/notes-12e/c14s5.pdf
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Note 118.B. If the normal derivative dT/dN is zero along part of the boundary

of the plate, then the flux of heat across that part of the boundary is zero. In this

case, that part of the boundary is insulated and that part of the boundary is a line

of flow.
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