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Section 119. Steady Temperatures in a Half Plane

Note. In this section and the following two, we consider specific boundary value

problems based on Laplace’s equation and a steady (i.e., equilibrium) temperature

distribution.

Note. Consider a plate in the shape of an infinite half plane, say lying in the upper

half plane (where y ≥ 0) of the complex plane. Suppose the edge y = 0 is perfectly

insulated, that the temperature is a constant of 1 on the segment −1 < x < 1, and

the temperature is a constant of 0 on the segments (−∞,−1)∪ (1,∞). See Figure

155.

We let T (x, y) be the temperature at point (x, y) when the temperature is at

equilibrium. The boundary problem we are faced with is to find T (x, y) satisfying

Laplace’s equation on the open upper half plane (where y > 0) and satisfying the

boundary conditions. We also impose a condition of boundedness on T (x, y) (a

reasonable physical constraint). That is:

Txx(x, y) + Tyy(x, y) = 0 for −∞ < x < ∞, y > 0 and
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T (x, 0) =

 1 when |x| < 1

0 when |x| > 1,

and |T (x, y)| < M for some positive constant M . Notice this is a Dirichlet problem

(as defined in Section 116. Transformations of Harmonic Functions).

Note. We’ll solve the above Dirichlet problem by transforming it into a region

in the uv plane that is the image under some transformation w = f(z) of the

region given in Figure 155 (left), where f is analytic in the upper half-plane and

conformal on the boundary y = 0 (except at the point (−1, 0) and (1, 0) where f

is undefined). The problem affiliated with the region in the uv plane (or the “w

plane”) will be easily solved. We then use Theorems 116.A and 117A to “pull back”

the solution from the uv plane to the z plane. Theorem 116.A guarantees that the

harmonic function in the w plane pulls back to a harmonic function in the z plane,

and Theorem 117.A guarantees that the boundary conditions in the w plane pull

back to the appropriate boundary conditions in the z plane. We start by browsing

Appendix A, “Table of Transformations of Regions,” and look for a transformation

that maps the upper half plane to a “convenient” region. Notice Figure 19 below

from the Appendix A.

https://faculty.etsu.edu/gardnerr/5337/notes/Chapter9-9-116.pdf
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This suggest that we consider the transformation w = f(z) = Log
z − 1

z + 1
. Notice

this maps the interval (−1, 1) = (B, D) on the x axis to the horizontal line v = iπ,

maps interval (1,∞) = (D,∞) on the x axis to the interval (−∞, 0) on the u axis,

and maps the interval (−∞,−1) = (−∞, B) on the x axis to the interval (0,∞)

on the u axis. To better visualize this, think of x = 1 = D as mapped to −∞ (to

the far left in the W plane) and x = −1 = B mapped to ∞ (to the far right in the

w plane). Since w = f(z) = Log
z − 1

z + 1
is analytic on the (open) upper half plane

and conformal on the boundary (except at ±1) because it has nonzero derivative

there, then the boundary conditions transform from the z plane to the w plane

by Theorem 117.A. Notice this means that the boundary condition T = 1 in the

z plane is mapped to the boundary condition T = 1 along the line y = iπ in the

w plane, and the boundary condition T = 0 is mapped to the boundary condition

T = 0 along the u axis in the w plane (as shown in Figure 155, right). We need

a harmonic function on the region of the w plane as given in Figure 155 (right)

which satisfies the boundary conditions given in that figure.

Note. We can easily solve the Dirichlet problem in the w plane. We take T (u, v) =

v/π. This is harmonic because it is the imaginary part of the analytic function

g(w) = w/π, and it clearly satisfies the boundary conditions. Since we use the

principal value of the logarithm (see Section 3.30. The Logarithm Function in the

notes based on the 8th edition of the book), then we have

w = u + iv = f(z) = Log
z − 1

z + 1
= ln

∣∣∣∣z − 1

z + 1

∣∣∣∣ + iArg

(
z − 1

z + 1

)
.

Therefore v = Arg

(
z − 1

z + 1

)
and v/π =

1

π
Arg

(
z − 1

z + 1

)
. We just need to convert

https://faculty.etsu.edu/gardnerr/5337/notes/Chapter3-30.pdf
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this into xy coordinates. With z = x + iy we have

T (x, y) =
1

π
Arg

(
(x + iy)− 1

(x + iy) + 1

)
.

Since
(x + iy)− 1

(x + iy) + 1
=

(x− 1) + iy

(x + 1) + iy
=

(
(x− 1) + iy

(x + 1) + iy

) (
(x + 1)− iy

(x + 1)− iy

)
=

(x2 − 1) + y2 + i(y(x + 1)− y(x− 1))

(x + 1)2 + y2 =
x2 + y2 − 1 + i(2y)

x2 + 2x + y2 + 1
,

then

T (x, y) =
1

π
Arg

(
x2 + y2 − 1 + i(2y)

x2 + 2x + y2 + 1

)
.

Notice that in the open upper half plane, the principal argument will be (strictly)

between 0 and π. This is the solution to the given Dirichlet problem.

Note. To further explore the solution, we modify it and express it in terms of

the real arctangent function. Recall that for z = x + iy = reiθ, where x 6= 0, we

have tan θ = y/x. Brown and Churchill also use the arctangent function, but we

are more careful than they are. Recall that the range of the arctangent function is

(−π/2, π/2) (see my online Calculus 1 notes on Section 1.6. Inverse Functions and

Logarithms, for example). However, the principal argument function will return

values over the upper half plane which are between 0 and π. So we cannot (as

Brown and Churchill do) simply convert T (x, y) into terms of the real arctangent

function. We can directly use the arctangent function in the open first quadrant

(where principal arguments are strictly between 0 and π/2, and we can indirectly

use it in the open second quadrant (where principal arguments are strictly between

π/2 and π). However, we cannot use it when the principal argument is π/2 (which

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c1s6-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c1s6-14E.pdf
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is the case along the positive y axis). This leads us to express T (x, y) piecewise in

terms arctangent as follows:

T (x, y) =
1

π
Arg

(
x2 + y2 − 1 + i(2y)

x2 + 2x + y2 + 1

)
=

1

π
Arg

(
x2 + y2 − 1

x2 + 2x + y2 + 1
+ i

2y

x2 + 2x + y2 + 1

)

=


1
π arctan

(
2y

x2+y2−1

)
if 2y

x2+y2−1 > 0

1/2 if x2 + y2 = 1

1
π

(
arctan

(
2y

x2+y2−1

)
+ π

)
if 2y

x2+y2−1 < 0

=


1
π arctan

(
2y

x2+y2−1

)
if x2 + y2 > 1

1/2 if x2 + y2 = 1

1
π

(
arctan

(
2y

x2+y2−1

)
+ π

)
if x2 + y2 < 1

where the last equality holds because the sign of 2y/(x2 + y2 − 1) is the same as

the sign of x2 + y2 − 1, since y > 0 in the upper half plane of the z plane.

Note. With an explicit expression for T (x, y), we can verify directly that it is

harmonic on the upper half plane and that it satisfies the boundary conditions.

For example, for a point on the real axis of the form (xB, 0) where −1 < xB < 1,

we can take a limit as (x, y) → (xB, 0) for (x, y) in the upper half plane. Notice

that we can assume that (x, y) has coordinates satisfying x2 + y2 < 1 and, since

arctan is continuous at 0, we have

lim
(x,y)→(xB ,0)

1

π

(
arctan

(
2y

x2 + y2 − 1

)
+ π

)
= 1 + lim

(x,y)→(xB ,0)
arctan

(
2y

x2 + y2 − 1

)
= 1 + arctan(0) = 1 + 0 = 1,
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as expected. Similarly, if (x, y) → (xB, 0) for (x, y) in the upper half plane for

|xB| > 1, T (x, y) has the limit value of 0.

Note. For isotherms of T (x, y) we set T (x, y) = c1, where c1 is a constant satisfying

0 < c1 < 1 (notice that T (x, y) is always between 0 and 1). First, notice that for

c1 = 1/2, the isotherms are the upper half of the circle x2 +y2 = 1. More generally,

1

π
arctan

(
2y

x2 + y2 − 1

)
= c1 implies

2y

x2 + y2 − 1
= tan(πc1)

or 2y = (x2 +y2−1) tan(πc1) or 2y cot(πc1) = x2 +y2−1 or x2 +y2−2y cot(πc1) =

1 or, since 1 + cot2 θ = csc2 θ, x2 + y2 − 2y cot(πc1) = csc2(πc1) − cot2(πc1) or

x2 + y2 − 2y cot(πc1) + cot2(πc1) = csc2(πc1) or

x2 + (y − cot πc1)
2 = csc2(πc1).

That is, isotherms are arcs of circles of the form x2+(y−cot(πc1))
2 = csc2(πc1); the

arcs are contained in the upper half plane. These circles have centers (0, cot(πc1))

on the y axis and they pass through the points (−1, 0) and (1, 0) (since (x, y) =

(±1, 0) reduces the equation of the isotherm to the identity 1+cot2(πc1) = csc2(πc1)).

Similarly,
1

π

(
arctan

(
2y

x2 + y2 − 1

)
+ π

)
= c1

implies

tan

(
arctan

(
2y

x2 + y2 − 1

)
+ π

)
= tan(πc1)

or



119. Steady Temperatures in a Half Plane 7

tan

(
arctan

(
2y

x2 + y2 − 1

)
+ π

)
= tan

(
arctan

(
2y

x2 + y2 − 1

))
= tan(πc1)

where the first equality holds because the period of tangent is π. We again have

2y

x2 + y2 − 1
= tan πc1,

and isotherms are the same as above.

Note. We now draw a few of the isotherms x2 + (y − cot(πc1))
2 = csc2(πc1). The

center of such a circle is (0, cot(πc1)) where 0 < πc1 < π (recall 0 < c1 < 1). Recall

that cot θ is positive for 0 < θ < π/2 and cot θ is negative for π/2 < θ < π (see, for

example, my online Calculus 1 notes on Section 1.3. Trigonometric Functions and

notice Figure 1.41). So for 0 < c1 < 1/2, the isotherm is a circle with center (0, y1)

where y1 is positive and the circle passes through the points (−1, 0) and (1, 0). For

1/2 < c1 < 1, the isotherm is a circle with center (0, y1) where y1 is negative and the

circle passes through the points (−1, 0) and (1, 0). As commented above, the circle

centered at (0, 0) and passing through the points (−1, 0) and (1, 0) corresponds

to the isotherm T (x, y) = 1/2. Notice that you can think of the boundary where

T (x, y) = 1 as a limit (as y1 → −∞) of the isotherms which have centers (0, y1)

where y1 is negative. You can also think of the boundary where T (x, y) = 0 as a

limit (as y1 →∞) of the isotherms which have centers (0, y1) where y1 is positive.

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c1s3-14E.pdf
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