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Section 120. A Related Problem

Note. In this section, we consider a specific boundary value problem based on

Laplace’s equation and a steady (i.e., equilibrium) temperature distribution. It

concerns an rectangular plate that is infinite in one direction. We use a particular

transformation to translate this problem into that of the previous section.

Note. Consider a semi-infinite plate bounded by x = −π/2, x = π/2, y = 0,

and unbounded in the positive y direction. The temperature on the boundaries

x = ±π/2 is a constant of 0 and the temperature on the boundary y = 0 is a

constant of 1. See Figure 156.

We let T (x, y) be the temperature at point (x, y) when the temperature is at

equilibrium. The boundary problem we are faced with is to find T (x, y) satisfying

Laplace’s equation on the interior of the rectangle and satisfying the boundary

conditions. As in the previous section, we impose a condition of boundedness on
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T (x, y). That is:

Txx(x, y) + Tyy(x, y) = 0 for − π/2 < x < π/2, y > 0,

T (−π/2, y) = T (π/2, y) = 0 for y > 0, and T (x, 0) = 1 for − π/2 < x < /π/2,

and |T (x, y)| < M for some positive constant M .

Note. Browsing Appendix 2, “Table of Transformations of Regions,” we notice in

Figure 9 that the transformation w = sin z transforms the given region onto the

region used in the example worked in Section 119. Steady Temperatures in a Half

Plane.

Also, w = sin z is analytic in the entire complex plane and, since its derivative is

cos z, conformal on the boundary of the region (except at ±π/2). So with s = sin z,

Theorem 116.A guarantees that a harmonic function in the w plane pulls back to a

harmonic function in the z plane, and Theorem 117.A guarantees that the boundary

conditions in the w plane pulls back to the appropriate boundary conditions in the

z plane. So in the w plane we consider the boundary problem:

Tuu(u, v) + Tvv(u, v) = 0 for − 1 < u < 1, v > 0,

https://faculty.etsu.edu/gardnerr/5337/notes/Chapter10-9-118.pdf
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T (−1, v) = T (1, v) = 0 for v > 0, and T (u, 0) = 1 for − 1 < u < 1,

and |T (u, v)| < M for some positive constant M . We know from the previous

section that the solution to this is:

T (u, v) =


1
π arctan

( 2v
u2+v2−1

)
if 2v

u2+v2−1 > 0

1/2 if u2 + v2 = 1

1
π

(
arctan

( 2v
u2+v2−1

)
+ π

)
if 2v

u2+v2−1 < 0.

We have sin z = sin x cosh y + i cos x sinh y (by Lemma 3.34.A of Section 3.34.

Trigonometric Functions in the notes based on the 8th edition of Brown and

Churchill), so that in the transformation w = u + iv = sin z we have u(x, y) =

sin x cosh y and v(x, y) = cos x sinh y. So the solution in the w plane pulls back to

the following solution in the z plane:

T (u, v) =


1
π arctan

(
2 cos x sinh y

(sinx cosh y)2+(cos x sinh y)2−1

)
if 2 cos x sinh y

(sinx cosh y)2+(cos x sinh y)2−1 > 0

1/2 if (sinx cosh y)2 + (cos x sinh y)2 = 1

1
π

(
arctan

(
2 cos x sinh y

(sinx cosh y)2+(cos x sinh y)2−1

)
+ π

)
if 2 cos x sinh y

(sinx cosh y)2+(cos x sinh y)2−1 < 0.

=


1
π arctan

(
2 cos x sinh y

sin2 x cosh2 y+cos2 x sinh2 y−1

)
if 2 cos x sinh y

sin2 x cosh2 y+cos2 x sinh2 y−1
> 0

1/2 if sin2 x cosh2 y + cos2 x sinh2 y = 1

1
π

(
arctan

(
2 cos x sinh y

sin2 x cosh2 y+cos2 x sinh2 y−1

)
+ π

)
if 2 cos x sinh y

sin2 x cosh2 y+cos2 x sinh2 y−1
< 0.

Using the identities sin2 x = 1− cos2 x and cosh2 y = 1 + sinh2 y, we have

sin2 x cosh2 y + cos2 x sinh2 y − 1 = (1− cos2 x)(1 + sinh2 y) + cos2 x sinh2 y − 1

= 1 + sinh2 y − cos2 x− cos2 x sinh2 y + cos2 x sinh2 y − 1 = sinh2 y − cos2 x,

so that

2 cos x sinh y

(sin x cosh y)2 + (cos x sinh y)2 − 1
=

2 cos x sinh y

sinh2 y − cos2 x
=

2(cos x/ sinh y)

1− (cos x/ sinh y)2 .

https://faculty.etsu.edu/gardnerr/5337/notes/Chapter3-34.pdf
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Now the range of sinh y is R and we only have sinh y = 0 for y = 0, so cos x/ sinh y

could potentially be any real number. However, we also know that and cos x >

0 and sinh y > 0 over the region of interest, so cos x/ sinh y > 0. If we set

cos x/ sinh y = tan α (since the range of tan α for α > 0 is all positive real numbers,

such a positive α exists for any given x and y in the region of interest), then from

the double angle formula for tangent, tan 2α =
2 tan α

1− tan2 α
, we now have

2(cos x/ sinh y)

1− (cos x/ sinh y)2 =
2 tan α

1− tan2 α
= tan 2α.

We now have from the arctangent function that

T =
1

π
arctan(tan 2α) =

2α

π
=

2

π
α,

where tan α = cos x/ sinh y. That is,

T (x, y) =
2

π
arctan

(
cos x

sinh y

)
.

Since cos x/ sinh y > 0 and we can choose α between 0 and π/2, the arctangent

function outputs values between 0 and π/2, giving T (x, y) values between 0 and 1,

as desired (without the need for considering a piecewise definition for T ). This is

the solution to the original boundary problem.

Note. For isotherms, we consider T (x, y) = c1, where 0 < c1 < 1. That is, we

consider

T (x, y) =
2

π
arctan

(
cos x

sinh y

)
= c1.

Rearranging and taking tangents gives cos x = tan(πc1/2) sinh y. This is a highly

transcendental equation, but notice that each solution passes through the the points
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(−π/2, 0) and (π/2, 0) since cos π/2 = cos(−π/2) = 0 and sinh(0) = 0. The graphs

of the isotherms look something like the following.

Note. A related problem is the “beer in the snow” problem, given in Ralph Boas’

Invitation to Complex Analysis (Random House, 1987) on his pages 164 and 165.

The statement of the problem is:

“. . . let’s think of a bottle of beer lying on its side in a snowbank on a

sunny day. The lower half of the bottle will be cold, the upper half will

be warm, and we want to find the temperature distribution in the beer.

To get a tractable mathematical model, we will think of the bottle as

an infinite solid circular cylinder, with all transverse cross sections
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alike, so that any one cross section will be representative. [This is

sometimes called moving a boundary condition to infinity.] . . . This

idealization reduces the problem to a two-dimensional one, so that our

model requires us (as is shown in physics) to find a harmonic function

T inside a disk ∆, which we may take to be the unit disk, when the

upper half of the boundary is held at temperature T1, and the lower

half at temperature T2. . . ”

Note. The Beer in the Snow boundary problem can be stated as:

Txx(x, y) + Tyy(x, y) = 0 for x2 + y2 < 1

T (x, y) = T1 for x2 + y2 = 1, y > 0 and T (x, y) = T2 for x2 + y2 = 1, y < 0.
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Browsing Appendix 2, “Table of Transformations of Regions,” for a mapping be-

tween a nice region and the unit disk, we notice Figure 13, which maps the upper

half plane to the unit disk with the transformation w =
i− z

i + z
.

However, we need the nice region to be an image of the disk, not the other

way around. Fortunately, the mapping w =
i− z

i + z
is a linear fractional trans-

formation (or a “bilinear transformation”) and is of the form w =
az + b

cz + d
where

ad − bc = (−1)(i) − (i)(1) = −2i 6= 0. As discussed in Section 8.99, “Linear

Fractional Transformations” (in the 9th edition of Brown and Churchill), such a

transformation has an inverse of the form z =
−dw + b

cw − a
. So the inverse transfor-

mation of w =
i− z

i + z
is z =

−iw + i

w + 1
. Interchanging z and w in Figure 13 above,

gives the following transformation.

We have dealt with the upper half plane before in Section 119. Steady Temperatures

https://faculty.etsu.edu/gardnerr/5337/notes/Chapter10-9-119.pdf
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in a Half Plane, but the boundary conditions are of a different nature here (being

constant on the negative real axis, and constant on the positive real axis, as opposed

to the condition given in Section 119 where there are three intervals on which we

have constant boundary conditions). So we seek second transformation that allows

us to deal with an “easy” region and “easy” boundary conditions. Notice that

Figure 6 of Appendix 2 concerns a transformation between the upper half plane

and an infinite horizontal strip:

Again, however, we want the nice region in the w plane so that we can find a

solution there and use it to “pull back” to a solution in the z plane. The mapping

of Figure 6 is w = exp z, which has as an inverse the principal branch of the

logarithm, z = Log w. In particular, the principal branch of the logarithm returns

as argument in the interval (−π, π] so that it maps the upper half plane onto the

horizontal strip. Interchanging z and w to consider the transformation w = Log z

gives:

https://faculty.etsu.edu/gardnerr/5337/notes/Chapter10-9-119.pdf
https://faculty.etsu.edu/gardnerr/5337/notes/Chapter10-9-119.pdf
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We can now compose the transformations z = Log z and z =
−iw + i

w + 1
to get a

mapping of the horizontal strip to the upper half plane and then to the unit disk.

The mappings and boundary conditions are as follows:

Here with the second transformation, we introduce the r plane, where r = s + it.

Note. Similar to the solution given in Section 119. Steady Temperatures in a Half

Plane, we can take

T (s, t) =

(
T2 − T1

π

)
t + T1.

Since

(
T2 − T1

π

)
t is the imaginary part of the analytic function g(r) = r(T2 −

T1)/π, then it is harmonic and, since adding a constant to a harmonic function

yields a harmonic function, T (s, t) is harmonic, and it clearly satisfies the boundary

conditions. Now the composition Log

(
−iz + i

z + 1

)
maps the unit disc to the infinite

https://faculty.etsu.edu/gardnerr/5337/notes/Chapter10-9-119.pdf
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horizontal strip, as shown above. Next,

Log

(
−iz + i

z + 1

)
= ln

∣∣∣∣−iz + i

z + 1

∣∣∣∣ + iArg

(
−iz + i

z + 1

)
= s + it,

so we have t = Arg

(
−iz + i

z + 1

)
. To convert this to xy coordinates, we set z = x+iy,

from which we have

−iz + i

z + 1
=

(
−iz + i

z + 1

) (
z̄ + 1

z̄ + 1

)
=

i(−z + 1)(z̄ + 1)

|z|2 + z̄ + z + 1
=

i(−|z|2 + z̄ − z + 1)

|z|2 + 2Re(z) + 1

=
i(−|z|2 − 2iIm(z) + 1)

|z|2 + 2Re(z) + 1
=

2y + i(−(x2 + y2) + 1)

x2 + y2 + 2y + 1
,

so

T (x, y) =
T2 − T1

π
Arg

(
2y + i(−(x2 + y2) + 1)

x2 + y2 + 2y + 1

)
+ T1

is the solution of the Beer in the Snow problem.

Note. As in Section 119. Steady Temperatures in a Half Plane, we introduce the

arctangent function to more clearly express T (x, y) and to find isotherms. We have

T (x, y) =
T2 − T1

π
Arg

(
2y + i(−(x2 + y2) + 1)

x2 + y2 + 2y + 1

)
+ T1

=
T2 − T1

π
Arg

(
2y

x2 + y2 + 2y + 1
+ i

1− x2 − y2

x2 + y2 + 2y + 1

)
+ T1

=


T2−T1

π arctan
(

1−x2−y2

2y

)
+ T1 if 1−x2−y2

2y > 0

(T1 + T2)/2 if y = 0

T2−T1

π

(
arctan

(
1−x2−y2

2y

)
+ π

)
+ T1 if 1−x2−y2

2y < 0

=


T2−T1

π arctan
(

1−x2−y2

2y

)
+ T1 if y > 0

(T1 + T2)/2 if y = 0

T2−T1

π

(
arctan

(
1−x2−y2

2y

)
+ π

)
+ T1 if y < 0

https://faculty.etsu.edu/gardnerr/5337/notes/Chapter10-9-119.pdf
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where the last equality holds because the sign of (1 − x2 − y2)/(2y) is the same

as the sign of y, since 1 − (x2 + y2) > 0 in the open unit disk in the z plane.

Now in general, arctan(1/x) = π/2− arctan(x) = π/2 + arctan(−x) for x > 0 and

arctan(1/x) = −π/2− arctan(x) = −π/2 + arctan(−x) for x < 0, so we can write

arctan

(
1− x2 − y2

2y

)
=

π

2
+ arctan

(
2y

x2 + y2 − 1

)
for y > 0

and

arctan

(
1− x2 − y2

2y

)
= −π

2
+ arctan

(
2y

x2 + y2 − 1

)
for y < 0.

Then

T (x, y) =


T2−T1

π

(
π
2 + arctan

(
2y

x2+y2−1

))
+ T1 if y > 0

(T1 + T2)/2 if y = 0

T2−T1

π

(
−π

2 + arctan
(

2y
x2+y2−1

)
+ π

)
+ T1 if y < 0

=


T2−T1

π

(
π
2 + arctan

(
2y

x2+y2−1

))
+ T1 if y 6= 0

(T1 + T2)/2 if y = 0

=


T1+T2

2 + T2−T1

π arctan
(

2y
x2+y2−1

)
if y 6= 0

(T1 + T2)/2 if y = 0.

Note. With an explicit expression for T (x, y), we can verify directly that it is

harmonic on the upper half plane and that it satisfies the boundary conditions. For

example, for a point (x, y) in the open unit disk that approaches a point (xB, yB)

on the boundary of the unit disk where yB > 0 we have

lim
(x,y)→(xB ,yB)

(
T1 + T2

2
+

T2 − T1

π
arctan

(
2y

x2 + y2 − 1

))
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=
T1 + T2

2
+

T2 − T1

π

(
−π

2

)
= T1

Similarly, if (x, y) in the open unit disk that approaches a point (xB, yB) on the

boundary of the unit disk where yB < 0, T (x, y) has a limit value of (T1 + T2)/2 +

(T2 − T1)/2 = T2.

Note. For isotherms of T (x, y) we set T (x, y) = c1, where c1 is a constant such

that c1 is between T1 and T2 (notice that T (x, y) is always between T1 and T2).

First, notice that for c1 = (T1 + T2)/2, the isotherm is the line segment between

(−1, 0) and (1, 0). More generally,

T (x, y) =
T1 + T2

2
+

T2 − T1

π
arctan

(
2y

x2 + y2 − 1

)
= c1

implies

arctan

(
2y

x2 + y2 − 1

)
=

π

T2 − T1

(
c1 −

T1 + T2

2

)
= πc2

where c2 =
1

T2 − T1

(
c1 −

T1 + T2

2

)
. This gives

2y

x2 + y2 − 1
= tan(πc2).

This is the same condition on the isotherms as that given in the problem solved

in Section 119. Steady Temperatures in a Half Plane. So, again, the isotherms are

are arcs of circles of the form x2 + (y− cot(πc2)
2 = csc2(πc2); that are contained in

the unit disk. These circles have centers (0, cot(πc2)) on the y axis and they pass

through the points (−1, 0) and (1, 0) (since (x, y) = (±1, 0) reduces the equation

of the isotherm to the identity 1 + cot2(πc2) = csc2(πc2)).

https://faculty.etsu.edu/gardnerr/5337/notes/Chapter10-9-119.pdf
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Note. The isotherms are distributed similar to the following:
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