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Section 2.13. Mappings

Note. For a real valued function f of a real variable, we can graph the function

in the Cartesian plane by plotting all points (x, f(x)) for x in the domain of f .

We cannot perform the same feat for a complex valued function of a complex

variable since this would require a “2-dimensional” domain and a “2-dimensional”

range. We use the quotation marks because the term “dimension” is an aspect of

a vector space. C is a 1-dimensional vector space with complex scalars, but our

geometric interpretation of the complex plane as an “object” equivalent to R2 (we

even associated vectors in R2 with complex numbers in Section 1.4) implies that

we would need 4 (real) dimensions to graph w = f(z). So we need to come up with

something we can visualize. We often consider a particular set in the domain and

graph its image in the range.

Definition. The image of a point x in the domain of function f is the point

w = f(z) in the range of f . For set S a subset of the domain of f , the set

T = {w = f(z) | z ∈ S} is the image of S. The inverse image of a point w in

the range of function f is the set of all points z in the domain of f that have

w as their image, f−1({w}) = {z ∈ C | f(z) = w}. The inverse image of a set

T in the range of function f is the set of values z that have their image in T ,

f−1(T ) = {z ∈ C | f(z) ∈ T}.

Note. The existence of an inverse image is not to be confused with the existence of

an inverse function. For example, consider f(z) = z4. The image of {1, i,−1,−i} is

f({1, i,−1,−i}) = {1}, and so the inverse image of {1} is f−1({1}) = {1, i,−1,−i}.

Notice that f is not a one to one function and so has no inverse function.
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Note. Brown and Churchill use the terms “translation,” “rotation,” and “reflec-

tion” intuitively, though they can be given rigorous definitions.

Example 2.13.1. Consider f(z) = z2. First, we have u(x, y) = x2 − y2 and

v(x, y) = 2xy. So if we consider the hyperbola x2 − y2 = c1 (where c1 > 0, say)

it is mapped to the vertical line in the w-plane of u = x2 − y2 = c1 (and v ∈ R),

see Figure 17. If we consider the hyperbola 2xy = c2 (where c2 > 0, say; this is a

rotation of a hyperbola in standard form and has an axis with slope m = 1), it is

mapped to the horizontal line v = 2xy = c2 (and u ∈ R), see Figure 17. Brown and

Churchill give a more detailed argument about the parameterization of the vertical

and horizontal lines (see pages 39 and 40).
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Example 2.13.2. Consider f(z) = z2 again. From Example 2.13.1, we consider

the region consisting of hyperbolas of the form 2xy = c where 0 < c < 2 (think of

it as layers of hyperbolas). See Figure 18. This region is mapped to the horizontal

strip {(u, v) | u ∈ R, v ∈ (0, 2)}.

Example 2.13.3. Consider f(z) = z2 yet again, but this time we use polar

coordinates and write w = z2 = r2ei2θ. With w = ρeiϕ we have ρ = r2 and ϕ = 2θ.

If we consider the circle |z| = r0, then we see that it is mapped to the circle

|z| = ρ = r2
0. In fact, this is a 2 to 1 mapping since the upper half of |z| = r2

0 (that

is, z = r0e
iθ for θ ∈ [0, π)) is mapped to |z| = r2

0 and the lower half (z = r0e
iθ for

θ ∈ [π, 2π)) is also mapped to |z| = r2
0. Of course, this is why function f(z) = z2

does not have an inverse. Similarly, the upper half of the complex plane, Im(z) ≥ 0,

is mapped by f(z) = z2 to the whole complex plane.
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Note 2.13.A. Similarly to the argument in Example 2.13.3, the function f(z) = zn

for n ∈ N maps the circle |z| = r0 to the circle |w| = rn
0 in an n to 1 way. Also,

f(z) = zn maps the sector {z ∈ C | 0 ≤ arg(z) < 2π/n} to the whole complex

plane.

Note. Figures 1, 2, and 3 of Appendix 2 give some mapping properties of f(z) = z2.
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