Section 2.16. Theorems on Limits

Note. In this section we state and prove two useful theorems on limits. First we recall Thomas' definition of limit in the setting of a function of two real variables. This definition is also in my online notes for Calculus 3; see page 1 of 14.2 . Limits and Continuity in Higher Dimensions:

Thomas' Definition of Limit. Let function $f(x, y)$ be defined in a deleted neighborhood of $\left(x_{0}, y_{0}\right)$. We say that $f(x, y)$ approaches the limit L as (x, y) approaches $\left(x_{0}, y_{0}\right)$, denoted $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L$, if for every $\varepsilon>0$, there exists a corresponding $\delta>0$ such that

$$
0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta \text { implies }|f(x, y)-L|<\epsilon .
$$

Theorem 2.16.1. Suppose that $f(z)=u(x, y)+i v(x, y)$ where $z=x+i y$, $z_{0}=x_{0}+i y_{0}$, and $w_{0}=u_{0}+i v_{0}$. Then $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ if and only if

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=u_{0} \text { and } \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=v_{0} .
$$

Note. The proof of the second theorem follows easily from the first if we use some of the results from Calculus 3. We take the following as given. It is Theorem 1 in my online notes on 14.2. Limits and Continuity in Higher Dimensions:

Thomas' Theorem 1. Properties of Limits of Functions of Two Variables.

The following rules hold if L, M, and k are real numbers and

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L \text { and } \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)=M .
$$

1. Sum Rule: $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(f(x, y)+g(x, y))=L+M$
2. Difference Rule: $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(f(x, y)-g(x, y))=L-M$
3. Constant Multiple Rule: $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} k f(x, y)=k L$ (any number k)
4. Product Rule: $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(f(x, y) g(x, y))=L M$
5. Quotient Rule: $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{f(x, y)}{g(x, y)}=\frac{L}{M}, M \neq 0$
6. Power Rule: $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(f(x, y))^{n}=L^{n}, n$ a positive integer
7. Root Rule: $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \sqrt[n]{f(x, y)}=\sqrt[n]{L}=L^{1 / n}, n$ a positive integer and if n is even, we assume $L \geq 0$.

Theorem 2.16.2. Suppose that $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ and $\lim _{z \rightarrow z_{0}} F(z)=W_{0}$. Then

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}}(f(z)+F(z)) & =w_{0}+W_{0} \\
\lim _{z \rightarrow z_{0}} f(z) F(z) & =w_{0} W_{0}, \text { and } \\
\lim _{z \rightarrow z_{0}} f(z) / F(z) & =w_{0} / W_{0} \text { if } W_{0} \neq 0
\end{aligned}
$$

Note 2.16.A. From the second claim of Theorem 2.16.2, if $f(z)=c$ for some constant $c \in \mathbb{C}$, then we have $\lim _{z \rightarrow z_{0}} c F(z)=c w_{0}$. This combines with the first claim of Theorem 2.16.2 to show that limits behave in a linear way. Namely, for any constant $c_{1}, c_{2} \in \mathbb{C}$ we have $\lim _{z \rightarrow z_{0}}\left(c_{1} f(z)+c_{2} F(z)\right)=c_{1} w_{0}+c_{2} W_{0}$.

Lemma 2.16.A. For any $z_{0}, c \in \mathbb{C}$, we have $\lim _{z \rightarrow z_{0}} c=c$ and $\lim _{z \rightarrow z_{0}} z=z_{0}$.

Lemma 2.16.B. For any $z_{0} \in \mathbb{C}$ and $n \in \mathbb{N}$, we have $\lim _{z \rightarrow z_{0}} z^{n}=z_{0}^{n}$.

Corollary 2.16.A. Let $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ be a polynomial of degree n. Then $\lim _{z \rightarrow z_{0}} P(z)=P\left(z_{0}\right)$.

Corollary 2.16.B. Let $R(z)=P_{1}(z) / P_{2}(z)$ be a rational function; that is, R is the quotient of polynomials P_{1} and P_{2}. Then $\lim _{z \rightarrow z_{0}} R(z)=R\left(z_{0}\right)$, provided $P_{2}\left(z_{0}\right) \neq 0$.

