## Section 2.17. Limits Involving the Point at Infinity

Note. In this section, we introduce the symbol $\infty$ and rigorously define limits of $f(z)$ as $z$ approaches $\infty$ and limits of $f(z)$ which are $\infty$.

Note. Brown and Churchill introduce a sphere of radius 1 centered at the origin of the complex plane. They define the point $N$ as the point on the sphere farthest from the plane and "above" the plane (corresponding, in a sense, to the "north pole" of the sphere). They then map each point $P$ on the sphere (other than $N$ ) onto the plane by projecting the point $P$ onto the plane with a straight line through $P$ and $N$. This is called the stereographic projection and the sphere is called the Riemann sphere. The point $N$ itself is then associated with the symbol $\infty$. In this way, we have a one to one and onto mapping (i.e., a bijection) from the Riemann sphere to $\mathbb{C} \cup\{\infty\}$ (which is called the extended complex plane).


Note. In Introduction to Topology (MATH 4357/5357), you will encounter the extended complex plane as a "one-point compactification" of the complex plane; see my online notes for Introduction to Topology at 29. Local Compactness (see Example 4). We also address the extended complex plane as a metric space in our graduate-level Complex Analysis 1 class (MATH 5510); see my notes for this class at I.6. The Extended Plane and its Spherical Representation.

Definition. In the extended complex plane, an $\varepsilon$-neighborhood of $\infty$ is the set $\{z \in \mathbb{C}|1 /|z|<\varepsilon\}$. An open set containing an $\varepsilon$-neighborhood of $\infty$ for some $\varepsilon>0$ is a neighborhood of $\infty$.

Definition. Let $f$ be a function defined at all points $z$ of some neighborhood of $\infty$. If there is $w_{0} \in \mathbb{C}$ such that for all $\varepsilon>0$ there exists $\delta>0$ such that

$$
1 /|z|<\delta \text { implies }\left|f(z)-w_{0}\right|<\varepsilon,
$$

then the limit as $z$ approaches $\infty$ of $f$ is $w_{0}$, denoted $\lim _{z \rightarrow \infty} f(z)=w_{0}$.

Definition. Let $f$ by a function defined and nonzero at all points $z$ in some deleted neighborhood of $z_{0}$. If for all $\varepsilon>0$ there exists $\delta>0$ such that

$$
0<\left|z-z_{0}\right|<\delta \text { implies } 1 /|f(z)|<\varepsilon
$$

then the limit of $f$ as $z$ approaches $z_{0}$ is $\infty$, denoted $\lim _{z \rightarrow z_{0}} f(z)=\infty$.

Definition. Let $f$ be a function defined and nonzero at all points $z$ of some neighborhood of $\infty$. If for all $\varepsilon>0$ there exists $\delta>0$ such that

$$
1 /|z|<\delta \text { implies } 1 /|f(z)|<\varepsilon
$$

then the limit as z approaches $\infty$ of $f$ is $\infty$, denoted $\lim _{z \rightarrow \infty} f(z)=\infty$.

Theorem 2.17.1. If $z_{0}, w_{0} \in \mathbb{C}$ then

$$
\begin{aligned}
& \lim _{z \rightarrow z_{0}} f(z)=\infty \text { if and only if } \lim _{z \rightarrow z_{0}} 1 / f(z)=0 \\
& \lim _{z \rightarrow \infty} f(z)=w_{0} \text { if and only if } \lim _{z \rightarrow 0} f(1 / z)=w_{0}, \text { and } \\
& \lim _{z \rightarrow \infty} f(z)=\infty \text { if and only if } \lim _{z \rightarrow 0} 1 / f(1 / z)=0
\end{aligned}
$$

Example 2.17.A. We now establish the following limits.
(a) $\lim _{z \rightarrow-1} \frac{i z+3}{z+1}=\infty$.

Solution. Notice that the domain of $(i z+3) /(z+1)$ is $\mathbb{C} \backslash\{-1\}$, so it is defined on any deleted neighborhood of $z_{0}=-1$. Also, $(i z+3) /(z+1)=0$ only for $z=-3 / i=3 i$, so it is nonzero on a deleted $\varepsilon$ neighborhood of -1 where $0<\varepsilon<$ $|-1-3 i|=\sqrt{10}$. We let $f(z)=\frac{i z+3}{z+1}$ and consider

$$
\lim _{z \rightarrow-1} \frac{1}{f(z)}=\lim _{z \rightarrow-1} \frac{z+1}{i z+3}=\frac{(-1)+1}{i(-1)+3}=\frac{0}{3-i}=0
$$

where we have evaluated the limit using Corollary 2.16.B. So by Theorem 2.17.1 (1st claim), $\lim _{z \rightarrow-1} f(z)=\lim _{z \rightarrow-1} \frac{i z+3}{z+1}=\infty$.
(b) $\lim _{z \rightarrow \infty} \frac{2 z+i}{z+1}=2$.

Solution. Notice that the domain of $(2 z+i) /(z+1)$ is $\mathbb{C} \backslash\{-1\}$, so it is defined on a neighborhood of $\infty$. We let $f(z)=\frac{2 z+i}{z+1}$ and consider

$$
\lim _{z \rightarrow 0} f(1 / z)=\lim _{z \rightarrow 0} \frac{2(1 / z)+1}{(1 / z)+1}=\lim _{z \rightarrow 0} \frac{2(1 / z)+1}{(1 / z)+1} \frac{z}{z}=\lim _{z \rightarrow 0} \frac{2+i z}{1+z}=\frac{2+i(0)}{1+(0)}=\frac{2}{1}=2
$$

where we have evaluated the limit using Corollary 2.16.B. So by Theorem 2.17.1 (2nd claim), $\lim _{z \rightarrow \infty} f(z)=\lim _{z \rightarrow \infty} \frac{2 z+i}{z+1}=2$.
(c) $\lim _{z \rightarrow \infty} \frac{2 z^{3}-1}{z^{2}+1}=\infty$.

Solution. Notice that the domain of $\left(2 z^{3}-1\right) /\left(z^{2}+1\right)$ is $\mathbb{C} \backslash\{-i, i\}$, so it is defined on a neighborhood of $\infty$. Also, $\left(2 z^{3}-1\right) /\left(z^{2}+1\right)=0$ only for $z$ equal to the three cube roots of $1 / 2$, so it is nonzero on a neighborhood of $\infty$. For example, we can take $\left\{z \in \mathbb{C}|1 /|z|<1\}\right.$, and $\left(2 z^{3}-1\right) /\left(z^{2}+1\right)$ is defined and nonzero on this neighborhood of $\infty$. We let $f(z)=\frac{2 z^{3}-1}{z^{2}+1}$ and consider

$$
\begin{gathered}
\lim _{z \rightarrow 0} \frac{1}{f(1 / z)}=\lim _{z \rightarrow 0} \frac{(1 / z)^{2}+1}{2(1 / z)^{3}-1}=\lim _{z \rightarrow 0} \frac{(1 / z)^{2}+1}{2(1 / z)^{3}-1} \frac{z^{3}}{z^{3}}=\lim _{z \rightarrow 0} \frac{z+z^{3}}{2-z^{3}} \\
=\lim _{z \rightarrow 0} \frac{(0)+(0)^{3}}{2-(0)^{3}}=\frac{0}{2}=0
\end{gathered}
$$

where we have evaluated the limit using Corollary 2.16.B. So by Theorem 2.17.1 (3rd claim), $\lim _{z \rightarrow \infty} f(z)=\infty$.

