Section 2.22. Sufficient Conditions for Differentiability

Note. In the previous section, we saw that if function f is differentiable point z_{0} then the Cauchy-Riemann equations must be satisfied at z_{0}. In this section, we show that the Cauchy-Riemann equations are sufficient for the differentiability of function f at point z_{0} with some added continuity conditions on the partial derivatives of $u(x, y)$ and $v(x, y)$.

Note. Consider the function

$$
f(z)=\left\{\begin{array}{cc}
\bar{z}^{2} / z & \text { when } z \neq 0 \\
0 & \text { when } z=0
\end{array}\right.
$$

In Exercise 2.20.9 (also Exercise 2.20.9 in the 9th edition of the book) it is shown that $f^{\prime}(0)$ does not exist. However, in Exercise 2.23.6 (Example 2.22.3 in the 9th edition fo the book) it is shown that f satisfies the Cauchy-Riemann equations at $z_{0}=0$. So the Cauchy-Riemann equations are not, alone, sufficient to guarantee the differentiability of f. We now give sufficient conditions for the differentiability of f at z_{0}.

Theorem 2.22.A. The Cauchy-Riemann Equations and Continuity Imply Differentiability

Let the function $f(z)=u(x, y)+i v(x, y)$ be defined throughout some ε neighborhood of a point $z_{0}=x_{0}+i y_{0}$, and suppose that
(a) the first-order partial derivatives of the functions u and v with respect to x and y exist everywhere in the neighborhood, and
(b) those partial derivatives are continuous at $\left(x_{0}, y_{0}\right)$ and satisfy the CauchyRiemann equations $u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)$ and $u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right)$.

Then $f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$.

Example 2.22.1. Consider $f(x)=e^{z}=e^{x} e^{i y}$ (where $z=x+i y$). By Euler's formula, we have $f(z)=e^{x} \cos y+i e^{x} \sin y$, so $u(x, y)=e^{x} \cos y$ and $v(x, y)=$ $e^{x} \sin y$. Since $u_{x}=e^{x} \cos y=v_{y}$ and $u_{y}=-e^{x} \sin y=-v_{x}$ and these derivatives are continuous for all (x, y) then, by Theorem 2.22.A, $f^{\prime}(z)=u_{x}(x, y)+i v_{x}(x, y)=$ $e^{x} \cos y+i e^{x} \sin y=e^{z}$ for all $z \in \mathbb{C}$. This is consistent with your ideas from Calculus 2 and will be verified again when we consider power series in Chapter 5.

Example 2.22.2. We saw in Example 2.21 .2 that $f(z)=|z|^{2}$ satisfies the Cauchy Riemann equations at $z_{0}=0$. Since $f(z)=|z|^{2}=\left(x^{2}+y^{2}\right)+i(0)$, then $u(x, y)=$ $x^{2}+y^{2}$ and $v(x, y)=0$ then the first-order partial derivatives of u and v exist and are continuous everywhere, so by Theorem 2.22.A, f is differentiable at $z_{0}=0$.

