Section 2.23. Polar Coordinates

Note. In this section, we restate the results of the previous two sections on the Cauchy-Riemann equations, but this time in polar coordinates (r, θ) instead of rectangular coordinates (x, y).

Lemma 2.23.A. Let the function $f(z)=u(x, y)+i v(x, y)$ be defined throughout some ε neighborhood of a point $z_{0}=x_{0}+i y_{0}$, and suppose that
(a) the first-order partial derivatives of the functions u and v with respect to x and y exist everywhere in the neighborhood, and
(b) those partial derivatives are continuous at $\left(x_{0}, y_{0}\right)$ and satisfy the CauchyRiemann equations $u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)$ and $u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right)$.

Then with $z_{0}=r_{0} \exp \left(i \theta_{0}\right) \neq 0$ we have

$$
r_{0} u_{r}\left(r_{0}, \theta_{0}\right)=v_{\theta}\left(r_{0}, \theta_{0}\right) \text { and } u_{\theta}\left(r_{0}, \theta_{0}\right)=-r_{0} v_{r}\left(r_{0}, \theta_{0}\right)
$$

These are the polar coordinate forms of the Cauchy-Riemann equations.

Lemma 2.23.B. Let $f(z)=f(r \exp (i \theta))=u(r, \theta)+i v(r, \theta)$ be defined throughout some ε neighborhood of a nonzero point $z_{0}=r_{0} \exp \left(i \theta_{0}\right)$ and suppose that
(a) the first-order partial derivatives of the functions u and v with respect to r and θ exist everywhere in the neighborhood;
(b) those partial derivatives are continuous at $\left(r_{0}, \theta_{0}\right)$ and satisfy the polar form $r u_{r}=v_{\theta}$ and $u_{\theta}=-r v_{r}$ of the Cauchy Riemann equations at $\left(r_{0}, \theta_{0}\right)$.

Then the Cauchy-Riemann equations in rectangular form are satisfied at $z_{0}=$ $x_{0}+i y_{0}:$

$$
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \text { and } u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right)
$$

Note. The proof of Lemma 2.23.B is to be given in Exercise 2.23.7 (Exercise 2.24.5 in the 9th edition of the book).

Lemma 2.23.C. Let $f(z)=f(r \exp (i \theta))=u(r, \theta)+i v(r, \theta)$ satisfy the hypotheses of Lemma 2.23.B. Then f is differentiable at $z_{0}=r_{0} \exp \left(i \theta_{0}\right)$ and

$$
f^{\prime}\left(z_{0}\right)=e^{-i \theta_{0}}\left(u_{r}\left(r_{0}, \theta_{0}\right)+i v_{r}\left(r_{0}, \theta_{0}\right)\right)
$$

Note. The proof of Lemma 2.23.C is to be given in Exercise 2.23.8 (Exercise 2.24.6 in the 9th edition of the book). An alternative formula for $f^{\prime}\left(z_{0}\right)$ is to be given in Exercise 2.23.9 (Exercise 2.24.7(a) in the 9th edition of the book):

$$
f^{\prime}\left(z_{0}\right)=\frac{-i}{z_{0}}\left(u_{\theta}\left(r_{0}, \theta_{0}\right)+i v_{\theta}\left(r_{0}, \theta_{0}\right)\right) .
$$

Note. Lemmas 2.23.A, 2.23.B, and 2.23.C combine to give the following.

Theorem 2.23.A. Let the function $f(z)=f(r \exp (i \theta))=u(r, \theta)+i v(r, \theta)$ be defined throughout some ε neighborhood of a point $z_{0}=r_{0} \exp \left(i \theta_{0}\right)$, and suppose that
(a) the first-order partial derivatives of the functions u and v with respect to r and θ exist everywhere in the neighborhood, and
(b) those partial derivatives are continuous at $\left(r_{0}, \theta_{0}\right)$ and satisfy the polar form $r u_{r}=v_{\theta}$ and $u_{\theta}=-r v_{r}$ of the Cauchy-Riemann equations at $\left(r_{0}, \theta_{0}\right)$.

Then $f^{\prime}\left(z_{0}\right)=e^{-i \theta_{0}}\left(u_{r}\left(r_{0}, \theta_{0}\right)+i v_{r}\left(r_{0}, \theta_{0}\right)\right)$.

Example 2.23.2. Define $f(z)=f(r \exp (i \theta))=\sqrt[3]{r} \exp (i \theta / 3)$ for $r>0, \alpha<\theta<$ $\alpha+2 \pi$ for some fixed real α. This is "a cube root function." We have

$$
\begin{gathered}
u(r, \theta)=\sqrt[3]{r} \cos \left(\frac{\theta}{3}\right) \text { and } v(r, \theta)=\sqrt[3]{r} \sin \left(\frac{\theta}{3}\right), \text { so } \\
r u_{r}(r, \theta)=r\left(\frac{1}{3} r^{-2 / 3} \cos \left(\frac{\theta}{3}\right)\right)=\frac{r^{1 / 3}}{3} \cos \left(\frac{\theta}{3}\right)=v_{\theta}(r, \theta) \text { and } \\
u_{\theta}(r, \theta)=-\frac{\sqrt[3]{r}}{3} \sin \left(\frac{\theta}{3}\right)=-r\left(\frac{1}{3} r^{-2 / 3} \sin \left(\frac{\theta}{3}\right)\right)=-r v_{r} .
\end{gathered}
$$

So by Theorem 2.23.A, f is differentiable at all points at which it is defined and

$$
\begin{gathered}
f^{\prime}(z)=e^{-i \theta}\left(u_{r}(r, \theta)+i v_{r}(r, \theta)\right)=e^{-i \theta}\left(\frac{1}{3(\sqrt[3]{r})^{2}} \cos \left(\frac{\theta}{3}\right)+i \frac{1}{3(\sqrt[3]{r})^{2}} \sin \left(\frac{\theta}{3}\right)\right) \\
=\frac{e^{-i \theta}}{3(\sqrt[3]{r})^{2}} e^{i \theta / 3}=\frac{1}{3\left(\sqrt[3]{r} e^{i \theta / 3}\right)^{2}}
\end{gathered}
$$

Notice that this derivative is similar to what we would expect if we were to differentiate the real cube root function: $f(x)=x^{1 / 3}$ implies $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}=\frac{1}{3 x^{2 / 3}}$. We cannot explore root functions in detail until after we introduce the exponential function e^{z} and complex logarithm functions.

