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Section 2.23. Polar Coordinates

Note. In this section, we restate the results of the previous two sections on the

Cauchy-Riemann equations, but this time in polar coordinates (r, θ) instead of

rectangular coordinates (x, y).

Lemma 2.23.A. Let the function f(z) = u(x, y) + iv(x, y) be defined throughout

some ε neighborhood of a point z0 = x0 + iy0, and suppose that

(a) the first-order partial derivatives of the functions u and v with respect to x

and y exist everywhere in the neighborhood, and

(b) those partial derivatives are continuous at (x0, y0) and satisfy the Cauchy-

Riemann equations ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0).

Then with z0 = r0 exp(iθ0) 6= 0 we have

r0ur(r0, θ0) = vθ(r0, θ0) and uθ(r0, θ0) = −r0vr(r0, θ0).

These are the polar coordinate forms of the Cauchy-Riemann equations.

Lemma 2.23.B. Let f(z) = f(r exp(iθ)) = u(r, θ)+ iv(r, θ) be defined throughout

some ε neighborhood of a nonzero point z0 = r0 exp(iθ0) and suppose that

(a) the first-order partial derivatives of the functions u and v with respect to r and

θ exist everywhere in the neighborhood;

(b) those partial derivatives are continuous at (r0, θ0) and satisfy the polar form

rur = vθ and uθ = −rvr of the Cauchy Riemann equations at (r0, θ0).
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Then the Cauchy-Riemann equations in rectangular form are satisfied at z0 =

x0 + iy0:

ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0).

Note. The proof of Lemma 2.23.B is to be given in Exercise 2.23.7 (Exercise 2.24.5

in the 9th edition of the book).

Lemma 2.23.C. Let f(z) = f(r exp(iθ)) = u(r, θ)+ iv(r, θ) satisfy the hypotheses

of Lemma 2.23.B. Then f is differentiable at z0 = r0 exp(iθ0) and

f ′(z0) = e−iθ0(ur(r0, θ0) + ivr(r0, θ0)).

Note. The proof of Lemma 2.23.C is to be given in Exercise 2.23.8 (Exercise 2.24.6

in the 9th edition of the book). An alternative formula for f ′(z0) is to be given in

Exercise 2.23.9 (Exercise 2.24.7(a) in the 9th edition of the book):

f ′(z0) =
−i

z0
(uθ(r0, θ0) + ivθ(r0, θ0)).

Note. Lemmas 2.23.A, 2.23.B, and 2.23.C combine to give the following.
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Theorem 2.23.A. Let the function f(z) = f(r exp(iθ)) = u(r, θ) + iv(r, θ) be

defined throughout some ε neighborhood of a point z0 = r0 exp(iθ0), and suppose

that

(a) the first-order partial derivatives of the functions u and v with respect to r and

θ exist everywhere in the neighborhood, and

(b) those partial derivatives are continuous at (r0, θ0) and satisfy the polar form

rur = vθ and uθ = −rvr of the Cauchy-Riemann equations at (r0, θ0).

Then f ′(z0) = e−iθ0(ur(r0, θ0) + ivr(r0, θ0)).

Example 2.23.2. Define f(z) = f(r exp(iθ)) = 3
√

r exp(iθ/3) for r > 0, α < θ <

α + 2π for some fixed real α. This is “a cube root function.” We have

u(r, θ) = 3
√

r cos

(
θ

3

)
and v(r, θ) = 3

√
r sin

(
θ

3

)
, so

rur(r, θ) = r

(
1

3
r−2/3 cos

(
θ

3

))
=

r1/3

3
cos

(
θ

3

)
= vθ(r, θ) and

uθ(r, θ) = −
3
√

r

3
sin

(
θ

3

)
= −r

(
1

3
r−2/3 sin

(
θ

3

))
= −rvr.

So by Theorem 2.23.A, f is differentiable at all points at which it is defined and

f ′(z) = e−iθ(ur(r, θ) + ivr(r, θ)) = e−iθ

(
1

3( 3
√

r)2 cos

(
θ

3

)
+ i

1

3( 3
√

r)2 sin

(
θ

3

))

=
e−iθ

3( 3
√

r)2e
iθ/3 =

1

3( 3
√

reiθ/3)2 .

Notice that this derivative is similar to what we would expect if we were to dif-

ferentiate the real cube root function: f(x) = x1/3 implies f ′(x) = 1
3x

−2/3 = 1
3x2/3 .

We cannot explore root functions in detail until after we introduce the exponential

function ez and complex logarithm functions. Revised: 3/14/2020


