Section 2.25. Examples

Note. We now give some of the examples in the text, but present two of them as theorems.

Example 2.25.2. Consider $f(z)=\cosh x \cos y+i \sinh x \sin y$. With $f(z)=$ $f(x+i y)=u(x, y)+i v(x, y)$ we have $u(x, y)=\cosh x \cos y$ and $v(x, y)=\sinh x \sin y$. Recall that $\frac{d}{d x}[\cosh x]=\sinh x$ and $\frac{d}{d x}[\sinh x]=\cosh x$ (see my Calculus $2[$ MATH 1920] notes for more properties of the hyperbolic trig functions at 7.8. Hyperbolic Functions). We have that the Cauchy-Riemann equations are satisfied,

$$
u_{x}(x, y)=\sinh x \cos y=v_{y} \text { and } u_{y}(x, y)=-\cosh x \sin y=-v_{x}
$$

for all (x, y). Since the first partial derivatives of u and v exist and are continuous for all (x, y), then by Theorem 2.22.A we have that f is an entire function.

Example 2.25.3. (Theorem 2.25.A.)

Suppose that a function $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ and its conjugate $\overline{f(z)}=u(x, y)-i v(x, y)$ are both analytic in a given domain D. Then f is constant throughout D.

Example 2.25.4. (Theorem 2.25.B.)

Suppose that a function $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ is analytic in a given domain D and that $|f(z)|$ is constant throughout D. Then f is constant throughout D.

Note. We present one more theorem, but leave the proof as Exercise 2.25.7 (Exercise 2.26.7 in the 9th edition of the book).

Exercise 2.25.7. (Theorem 2.25.C.)

Let a function f be analytic everywhere in a domain D. If $f(z)$ is real-valued for all $z \in D$, then $f(z)$ must be constant throughout D.

