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Section 2.26. Harmonic Functions

Note. In this section we define harmonic functions which map R
2 → R and have

a number of applications to be explored later. Harmonic functions are then related

to analytic functions.

Definition. A real-valued function H : R
2 → R is harmonic in an open connected

set D of the xy-plane if it has continuous partial derivatives of the first and second

order and satisfies the partial differential equation

Hxx(x, y) + Hyy(x, y) = 0

throughout D. The PDE is Laplace’s equation.

Note. Laplace’s equation describes the distribution of heat and electrostatic po-

tential in a two dimensional setting (at equilibrium). Chapters 10 and 11 explore

these problems in detail.

Example 2.26.1. Consider T (x, y) = e−y sin x. We have Txx = −e−y sin x and

Tyy = e−y sinx, so Txx(x, y) + Tyy(x, y) = 0. Also, T (0, y) = 0, T (π, y) = 0,

T (x, 0) = sinx, and limy→∞ T (x, y) = 0. So T (x, y) describes the steady state

temperature of a thin plate bounded by the region given in Figure 2.31 where the

temperature is held at 0 along the vertical sides and is given by half of a sine wave

along the lower boundary. The condition limy→∞ T (x, y) = 0 describes a condition

on the “boundary at infinity.”
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Theorem 2.26.1. If a function f(z) = u(x, y) + iv(x, y) is analytic in a domain

D, then its component functions u(x, y) and v(x, y) are harmonic in D.

Example 2.26.2. The function f(z) = f(x + iy) = e−y sin x − ie−y cos x has

u(x, y) = e−y sin x and v(x, y) = −e−y cos x, so that ux(x, y) = e−y cos x = vy(x, y)

and uy(x, y) = −e−y sin x = −vx(x, y) for all (x, y). Therefore f satisfies the

Cauchy-Riemann equations and the partial derivatives exist and are continuous for

all (x, y), so f is an entire function. Therefore by Theorem 2.26.1, both u(x, y) and

v(x, y) are harmonic on all of R
2.
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Definition. If two given functions u(x, y) and v(x, y) are harmonic in an open

connected set in R
2 and their first-order partial derivatives satisfy the Cauchy-

Riemann equations throughout the open connected set, then v(x, y) is a harmonic

conjugate of u(x, y).

Note. We will see soon that v(x, y) may be a harmonic conjugate of u(x, y), but

u(x, y) may not be a conjugate of v(x, y).

Theorem 2.26.2. A function f(z) = f(x + iy) = u(x, y) + iv(x, y) is analytic in

a domain D if and only if v(x, y) is a harmonic conjugate of u(x, y).

Example 2.26.4. Suppose that u(x, y) = x2 − y2 and v(x, y) = 2xy. Then

f(z) = f(x + iy) = u(x, y) + iv(x, y) = z2. Since f(z) = z2 is an entire function,

then by Theorem 2.26.2 v(x, y) is a conjugate of u(x, y). Now if we consider g(z) =

g(x + iy) = v(x, y) + iu(x, y) and try to apply the Cauchy-Riemann equations, we

have

vx = 2y and uy = −2y; vy = 2x and − ux = −2x.

The first Cauchy-Riemann equation is satisfied only for y = 0 and the second

Cauchy-Riemann equation is satisfied only for x = 0. So the Cauchy-Riemann

equations applied to g are satisfied only at 0. That is, g is analytic nowhere. So

u(x, y) is not a conjugate of v(x, y) by Theorem 2.26.2.
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Note. In Section 9.104, it is shown that every harmonic function u(x, y) has a har-

monic conjugate. However, actually finding the harmonic conjugate can be tricky

since it involves integration (which can be hard). The next example illustrates a

way to find a harmonic conjugate where the integration is easy.

Example 2.26.5. Consider u(x, y) = y3 − 3x2y. We have ux(x, y) = −6xy,

uxx(x, y) = −6y, uy(x, y) = 3y2−3x2, and uyy(x, y) = 6y, so uxx(x, y)+uyy(x, y) = 0

and u(x, y) is harmonic in the entire xy-plane. By Theorem 2.26.2, if v(x, y) is

a harmonic conjugate of u(x, y) then u and v must satisfy the Cauchy-Riemann

equations: ux = vy and uy = −vx. Here, this implies that vy(x, y) = ux(x, y) =

−6xy. So antidifferentiating with respect to y we have that v(x, y) = −3xy2 +ϕ(x)

where ϕ is a function of x only. Also uy(x, y) = 3y2−3x2 = −vx(x, y) = 3y2−ϕ′(x),

so we must have ϕ′(x) = 3x2. Hence ϕ(x) = x3 + C for some C ∈ R. So v(x, y) =

−3xy2 + x3 + C. This gives

f(z) = f(x + iy) = u(x, y) + iv(x, y) = (y3 − 3x2y) + i(−3xy2 + x3 + C)

= i{x3 − 3xy2 + i(3x2y − y3)}+ iC = iz3 + iC.

Since the components of f have first-order partials which are continuous and satisfy

the Cauchy-Riemann equations for all (x, y), then by Theorem 2.22.A f is analytic

in the entire complex plane. By Theorem 2.26.2, v(x, y) = −3xy2 + x3 + C (where

C ∈ R) is a conjugate of u(x, y) = y3 − 3x2y.
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