Section 2.26. Harmonic Functions

Note. In this section we define harmonic functions which map $\mathbb{R}^{2} \rightarrow \mathbb{R}$ and have a number of applications to be explored later. Harmonic functions are then related to analytic functions.

Definition. A real-valued function $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is harmonic in an open connected set D of the $x y$-plane if it has continuous partial derivatives of the first and second order and satisfies the partial differential equation

$$
H_{x x}(x, y)+H_{y y}(x, y)=0
$$

throughout D. The PDE is Laplace's equation.

Note. Laplace's equation describes the distribution of heat and electrostatic potential in a two dimensional setting (at equilibrium). Chapters 10 and 11 explore these problems in detail.

Example 2.26.1. Consider $T(x, y)=e^{-y} \sin x$. We have $T_{x x}=-e^{-y} \sin x$ and $T_{y y}=e^{-y} \sin x$, so $T_{x x}(x, y)+T_{y y}(x, y)=0$. Also, $T(0, y)=0, T(\pi, y)=0$, $T(x, 0)=\sin x$, and $\lim _{y \rightarrow \infty} T(x, y)=0$. So $T(x, y)$ describes the steady state temperature of a thin plate bounded by the region given in Figure 2.31 where the temperature is held at 0 along the vertical sides and is given by half of a sine wave along the lower boundary. The condition $\lim _{y \rightarrow \infty} T(x, y)=0$ describes a condition on the "boundary at infinity."

FIGURE 31

Theorem 2.26.1. If a function $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D, then its component functions $u(x, y)$ and $v(x, y)$ are harmonic in D.

Example 2.26.2. The function $f(z)=f(x+i y)=e^{-y} \sin x-i e^{-y} \cos x$ has $u(x, y)=e^{-y} \sin x$ and $v(x, y)=-e^{-y} \cos x$, so that $u_{x}(x, y)=e^{-y} \cos x=v_{y}(x, y)$ and $u_{y}(x, y)=-e^{-y} \sin x=-v_{x}(x, y)$ for all (x, y). Therefore f satisfies the Cauchy-Riemann equations and the partial derivatives exist and are continuous for all (x, y), so f is an entire function. Therefore by Theorem 2.26.1, both $u(x, y)$ and $v(x, y)$ are harmonic on all of \mathbb{R}^{2}.

Definition. If two given functions $u(x, y)$ and $v(x, y)$ are harmonic in an open connected set in \mathbb{R}^{2} and their first-order partial derivatives satisfy the CauchyRiemann equations throughout the open connected set, then $v(x, y)$ is a harmonic conjugate of $u(x, y)$.

Note. We will see soon that $v(x, y)$ may be a harmonic conjugate of $u(x, y)$, but $u(x, y)$ may not be a conjugate of $v(x, y)$.

Theorem 2.26.2. A function $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ is analytic in a domain D if and only if $v(x, y)$ is a harmonic conjugate of $u(x, y)$.

Example 2.26.4. Suppose that $u(x, y)=x^{2}-y^{2}$ and $v(x, y)=2 x y$. Then $f(z)=f(x+i y)=u(x, y)+i v(x, y)=z^{2}$. Since $f(z)=z^{2}$ is an entire function, then by Theorem 2.26.2 $v(x, y)$ is a conjugate of $u(x, y)$. Now if we consider $g(z)=$ $g(x+i y)=v(x, y)+i u(x, y)$ and try to apply the Cauchy-Riemann equations, we have

$$
v_{x}=2 y \text { and } u_{y}=-2 y ; v_{y}=2 x \text { and }-u_{x}=-2 x
$$

The first Cauchy-Riemann equation is satisfied only for $y=0$ and the second Cauchy-Riemann equation is satisfied only for $x=0$. So the Cauchy-Riemann equations applied to g are satisfied only at 0 . That is, g is analytic nowhere. So $u(x, y)$ is not a conjugate of $v(x, y)$ by Theorem 2.26.2.

Note. In Section 9.104, it is shown that every harmonic function $u(x, y)$ has a harmonic conjugate. However, actually finding the harmonic conjugate can be tricky since it involves integration (which can be hard). The next example illustrates a way to find a harmonic conjugate where the integration is easy.

Example 2.26.5. Consider $u(x, y)=y^{3}-3 x^{2} y$. We have $u_{x}(x, y)=-6 x y$, $u_{x x}(x, y)=-6 y, u_{y}(x, y)=3 y^{2}-3 x^{2}$, and $u_{y y}(x, y)=6 y$, so $u_{x x}(x, y)+u_{y y}(x, y)=0$ and $u(x, y)$ is harmonic in the entire $x y$-plane. By Theorem 2.26.2, if $v(x, y)$ is a harmonic conjugate of $u(x, y)$ then u and v must satisfy the Cauchy-Riemann equations: $u_{x}=v_{y}$ and $u_{y}=-v_{x}$. Here, this implies that $v_{y}(x, y)=u_{x}(x, y)=$ $-6 x y$. So antidifferentiating with respect to y we have that $v(x, y)=-3 x y^{2}+\varphi(x)$ where φ is a function of x only. Also $u_{y}(x, y)=3 y^{2}-3 x^{2}=-v_{x}(x, y)=3 y^{2}-\varphi^{\prime}(x)$, so we must have $\varphi^{\prime}(x)=3 x^{2}$. Hence $\varphi(x)=x^{3}+C$ for some $C \in \mathbb{R}$. So $v(x, y)=$ $-3 x y^{2}+x^{3}+C$. This gives

$$
\begin{gathered}
f(z)=f(x+i y)=u(x, y)+i v(x, y)=\left(y^{3}-3 x^{2} y\right)+i\left(-3 x y^{2}+x^{3}+C\right) \\
=i\left\{x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right)\right\}+i C=i z^{3}+i C .
\end{gathered}
$$

Since the components of f have first-order partials which are continuous and satisfy the Cauchy-Riemann equations for all (x, y), then by Theorem 2.22.A f is analytic in the entire complex plane. By Theorem 2.26.2, $v(x, y)=-3 x y^{2}+x^{3}+C$ (where $C \in \mathbb{R})$ is a conjugate of $u(x, y)=y^{3}-3 x^{2} y$.

