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Section 2.27. Uniquely Determined Analytic Functions

Note. In this section we start to see some of the restrictions on analytic functions.

We contrast the behavior of analytic functions of a complex variable (using Brown

and Churchill’s definition) with the behavior of functions of a real variable.

Lemma 2.27.A. Suppose that

(a) a function f is analytic throughout a domain D;

(b) f(z) = 0 at each point z of a domain or line segment contained in D.

Then f(z) = 0 in D; that is, f(z) is identically equal to zero throughout D.

Note. Lemma 2.27.A can be slightly generalized by replacing the condition “f(z) =

0” with the condition “f(z) = c” for some constant c ∈ C and by replacing the

conclusion that “f(z) is identically equal to zero” with the conclusion “f(z) = c.”

The proof of the generalization follows by applying Lemma 2.27.A to the function

f(z)− c.

Note. Lemma 2.27.A can be generalized to state that if two analytic functions on

domain D, f and g, are equal on a set that has a limit point in D, then f(z) = g(z)

for all z ∈ D. Of course a subdomain of D or a line segment in D contains a limit

point in D. See Corollary IV.3.3 in my online notes for Complex Analysis 1 [MATH

5510] on IV.3. Zeros of Analytic Functions.

http://faculty.etsu.edu/gardnerr/5510/notes/IV-3.pdf
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Theorem 2.27.A. A function that is analytic in a domain D is uniquely deter-

mined over D by its values in a domain, or along a line segment, contained in

D.

Example. Theorem 2.27.A does not apply to functions of a real variable. Consider

the function

f(x) =

 0 if x ∈ (−∞, 0]

e−1/x2

if x ∈ (0,∞).

notice that f is clearly differentiable for all real x, except possibly for x = 0. In

fact, f (n)(0) = 0 for all n ∈ N (this can be confirmed by considering the derivative

at 0 in terms of one-sided limits). So f is differentiable on all of R. If we were to

try to use Brown and Churchill’s definition of “analytic” in the real setting, then

we get that a function of a real variable is “analytic” on a set if it is differentiable

in a neighborhood of each point of the set. If this is the case (which it is not; the

definition of “analytic” in the real setting involves the existence of a power series),

then we see that f as defined in this example is analytic. However, its behavior is

not uniquely determined on a line segment, say (−∞, 0) here, since the function

g(x) ≡ 0 satisfies f(x) = g(x) for all x ∈ (−∞, 0), but f and g are different

functions of a real variable. By the way, function f given here is the standard

example of an infinitely differentiable function of a real variable at a = 0 which

does not have a power series representation of the form f(x) =
∑∞

n=0 ak(x − a)n.

For details, see my online notes for Analysis 2 (MATH 4227/5227) on 8.3. Taylor

Series.

http://faculty.etsu.edu/gardnerr/4217/notes/8-3.pdf
http://faculty.etsu.edu/gardnerr/4217/notes/8-3.pdf
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Note. Let D1 and D2 be domains in C with f1 analytic on D1 and f2 analytic on

D2. If for z ∈ D1 ∩D2 6= ∅ we have f1(z) = f2(z), then f1 can be extended from

D1 to D1 ∪ D2. The function f2(z) is called the analytic continuation of f1 into

D2. However, an analytic continuation does not always exist. When an analytic

continuation of f1 exists, it is unique by Theorem 2.27.A. However, we can have a

situation where f2 is an analytic continuation of f1 into D2 and f3 is an analytic

continuation of f2 into a domain D3 which intersects D1 (see Figure 34), but f3(z)

is not an analytic continuation of f1(z) into D3. This is illustrated in Exercise

2.28.2 (Exercise 2.29.2 in the 9th edition of the book). Analytic continuation is

explored in Chapter IX of Conway’s Functions of One Complex Variable I (see my

Additional Class Notes for Complex Analysis 2 [MATH 5520]).
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