## Section 2.27. Uniquely Determined Analytic Functions

Note. In this section we start to see some of the restrictions on analytic functions. We contrast the behavior of analytic functions of a complex variable (using Brown and Churchill's definition) with the behavior of functions of a real variable.

Lemma 2.27.A. Suppose that
(a) a function $f$ is analytic throughout a domain $D$;
(b) $f(z)=0$ at each point $z$ of a domain or line segment contained in $D$.

Then $f(z)=0$ in $D$; that is, $f(z)$ is identically equal to zero throughout $D$.

Note. Lemma 2.27.A can be slightly generalized by replacing the condition " $f(z)=$ 0 " with the condition " $f(z)=c$ " for some constant $c \in \mathbb{C}$ and by replacing the conclusion that " $f(z)$ is identically equal to zero" with the conclusion " $f(z)=c$." The proof of the generalization follows by applying Lemma 2.27.A to the function $f(z)-c$.

Note. Lemma 2.27.A can be generalized to state that if two analytic functions on domain $D, f$ and $g$, are equal on a set that has a limit point in $D$, then $f(z)=g(z)$ for all $z \in D$. Of course a subdomain of $D$ or a line segment in $D$ contains a limit point in $D$. See Corollary IV.3.3 in my online notes for Complex Analysis 1 [MATH 5510] on IV.3. Zeros of Analytic Functions.

Theorem 2.27.A. A function that is analytic in a domain $D$ is uniquely determined over $D$ by its values in a domain, or along a line segment, contained in $D$.

Example. Theorem 2.27.A does not apply to functions of a real variable. Consider the function

$$
f(x)=\left\{\begin{array}{cl}
0 & \text { if } x \in(-\infty, 0] \\
e^{-1 / x^{2}} & \text { if } x \in(0, \infty)
\end{array}\right.
$$

notice that $f$ is clearly differentiable for all real $x$, except possibly for $x=0$. In fact, $f^{(n)}(0)=0$ for all $n \in \mathbb{N}$ (this can be confirmed by considering the derivative at 0 in terms of one-sided limits). So $f$ is differentiable on all of $\mathbb{R}$. If we were to try to use Brown and Churchill's definition of "analytic" in the real setting, then we get that a function of a real variable is "analytic" on a set if it is differentiable in a neighborhood of each point of the set. If this is the case (which it is not; the definition of "analytic" in the real setting involves the existence of a power series), then we see that $f$ as defined in this example is analytic. However, its behavior is not uniquely determined on a line segment, say $(-\infty, 0)$ here, since the function $g(x) \equiv 0$ satisfies $f(x)=g(x)$ for all $x \in(-\infty, 0)$, but $f$ and $g$ are different functions of a real variable. By the way, function $f$ given here is the standard example of an infinitely differentiable function of a real variable at $a=0$ which does not have a power series representation of the form $f(x)=\sum_{n=0}^{\infty} a_{k}(x-a)^{n}$. For details, see my online notes for Analysis 2 (MATH 4227/5227) on 8.3. Taylor Series.

Note. Let $D_{1}$ and $D_{2}$ be domains in $\mathbb{C}$ with $f_{1}$ analytic on $D_{1}$ and $f_{2}$ analytic on $D_{2}$. If for $z \in D_{1} \cap D_{2} \neq \varnothing$ we have $f_{1}(z)=f_{2}(z)$, then $f_{1}$ can be extended from $D_{1}$ to $D_{1} \cup D_{2}$. The function $f_{2}(z)$ is called the analytic continuation of $f_{1}$ into $D_{2}$. However, an analytic continuation does not always exist. When an analytic continuation of $f_{1}$ exists, it is unique by Theorem 2.27.A. However, we can have a situation where $f_{2}$ is an analytic continuation of $f_{1}$ into $D_{2}$ and $f_{3}$ is an analytic continuation of $f_{2}$ into a domain $D_{3}$ which intersects $D_{1}$ (see Figure 34 ), but $f_{3}(z)$ is not an analytic continuation of $f_{1}(z)$ into $D_{3}$. This is illustrated in Exercise 2.28.2 (Exercise 2.29.2 in the 9th edition of the book). Analytic continuation is explored in Chapter IX of Conway's Functions of One Complex Variable I (see my Additional Class Notes for Complex Analysis 2 [MATH 5520]).


Revised: 1/11/2019

