Chapter 3. Elementary Functions

Section 3.29. The Exponential Function

Note. In this section we explore the function e^{z} in a little more detail.

Note. In section 2.14, we defined $e^{z}=e^{x+i y}=e^{x} e^{i y}=e^{x}(\cos y+i \sin y)$ (based on Euler's formula from Section 1.6).

Lemma 3.29.A. For all $z_{1}, z_{2} \in \mathbb{C}$ we have $e^{z_{1}} e^{z_{2}}=e^{z_{1}+z_{2}}$.

Corollary 3.29.A. For all $z_{1}, z_{2} \in \mathbb{C}$ we have $e^{z_{1}} / e^{z_{2}}=e^{z_{1}-z_{2}}$. Also, $1 / e^{z}=$ $\left(e^{z}\right)^{-1}=e^{-z}$.

Note. We know from Example 2.22.1 that $\frac{d}{d z}\left[e^{z}\right]=e^{z}$ and so e^{z} is an entire function. Since

$$
\left|e^{z}\right|=\left|e^{x+i y}\right|=\left|e^{x} e^{i y}\right|=\left|e^{x}\right||\cos y+i \sin y|=\left|e^{x} \sqrt{\cos ^{2} y+\sin ^{2} y}\right|=\left|e^{x}\right|=e^{x}
$$

then $e^{z} \neq 0$ for all $z \in \mathbb{C}$. Also $\arg \left(e^{z}\right)=\arg \left(e^{x+i y}\right)=\{y+2 n \pi \mid n \in \mathbb{Z}\}$. A surprising result is that e^{z} is a periodic function. Notice that $e^{z+2 \pi i}=e^{z}$ so that the period of e^{z} is $2 \pi i$.

Note 3.29.A. We also have for any $z=r e^{i \theta} \in \mathbb{C}$ where $z \neq 0$, that

$$
e^{\ln (|z|)+i \arg z}=e^{\ln |z|} e^{i \arg z}=|z| e^{i \theta}=r e^{i \theta}=z .
$$

So the range of e^{z} is $\mathbb{C} \backslash\{0\}$. This, combined with the periodic nature of e^{z} will play a role in defining the inverse of e^{z} (that is, defining the complex logarithm function) in the next two sections.

Example. Find all $z=x+i y$ such that $e^{z}=1+i$.

Solution. By Note 2.29.A we have $e^{\ln |w|+i \arg (w)}=w$. Here with $w=1+i$ we have $\ln |w|=\ln |1+i|=\ln \sqrt{2}=(1 / 2) \ln 2$ and $\arg (w)=\arg (1+i)=(\pi / 4+2 n \pi) i$ where $n \in \mathbb{Z}$. So to solve $e^{z}=1+i$ we take $z=\ln |w|+i \arg (w)=\ln |1+i|+i \arg (1+i)=$ $\frac{1}{2} \ln 2+i(2 n+1 / 4) \pi$ where $n \in \mathbb{Z}$.

