Section 3.30. The Logarithm Function

Note. In this section we begin defining a complex logarithm function. In so doing, we will define inverses of various restricted versions of e^{z}. This will provide some challenges since e^{z} is a periodic function with period $2 \pi i$. The challenges are resolved with the definition of the principal branch of the logarithm.

Note. At the end of Section 3.29 we saw that for $z \neq 0, z=e^{\ln (|z|)+i \arg (z)}$. The set $\arg (z)$ consists of an infinite number of values, any two of which differ by an integer multiple of $2 \pi i$. This leads to the following definition.

Definition. For any $z \in \mathbb{C}$ with $z \neq 0$, define the "multiple-valued" function

$$
\log z=\ln |z|+i \arg (z)
$$

Note 3.30.A. Arguably, there is no such thing as a "multiple-valued" function by the very definition of "function." Like the set valued "arg(z)" encountered in Section 1.8, we can similarly think of $\log z$ as defined here as set valued. Brown and Churchill approach it slightly differently. They take the unique value in $\arg (z)$ in the interval $(-\pi, \pi]$ and denote it as Θ. They then define

$$
\log z=\ln |z|+i(\Theta+2 n \pi) \text { where } n \in \mathbb{Z}
$$

This is equivalent to the definition above. Sometimes the value Θ is called the principal argument of z (see Section 1.6. Exponential Form). We'll use it to define the principal branch of the logarithm. The interval $(-\pi, \pi]$ is not universally accepted for the principal value. Notice that we have $e^{\log z}=z$ for all $z \neq 0$.

Example. In Section 3.29 we saw that if $e^{z}=1+i$ then $z=x+i y=\ln (\sqrt{2})+$ $(\pi / 4+2 n \pi) i$ for $n \in \mathbb{Z}$. Therefore $\log (1+i)=\ln (\sqrt{2})+(\pi / 4+2 n \pi) i$ for $n \in \mathbb{Z}$ or, more appropriately, $\log (1+i)=\{\ln (\sqrt{2})+(\pi / 4+2 n \pi) i \mid n \in \mathbb{Z}\}$.

Definition. The principal value of $\log z$ is based on the value of $\arg (z)$ in $(-\pi, \pi]$ which we denote Θ. We define the principal value of $\log z$ as

$$
\log z=\ln |z|+i \Theta
$$

Note. We have that $\log z$ is a "single-valued" function (that is, an actual function). The relationship between $\log z$ and $\log z$ is

$$
\log z=\log z+2 n \pi i \text { for } n \in \mathbb{Z}
$$

(More appropriately, $\log z=\{\log z+2 n \pi i \mid n \in \mathbb{Z}\}$.)

Example 3.30.2. With $z=1$ we have $|z|=1$ and $\arg (z)=\{2 n \pi \mid n \in \mathbb{Z}\}$. Therefore $\log 1=\ln 1+2 n \pi i=2 n \pi i$ for $n \in \mathbb{Z}$. (More appropriately, $\log 1=$ $\{2 n \pi i \mid n \in \mathbb{Z}\}$.) But Log $1=0$.

