Section 3.30. The Logarithm Function

Note. In this section we begin defining a complex logarithm function. In so doing, we will define inverses of various restricted versions of e^z . This will provide some challenges since e^z is a periodic function with period $2\pi i$. The challenges are resolved with the definition of the principal branch of the logarithm.

Note. At the end of Section 3.29 we saw that for $z \neq 0$, $z = e^{\ln(|z|)+i \arg(z)}$. The set $\arg(z)$ consists of an infinite number of values, any two of which differ by an integer multiple of $2\pi i$. This leads to the following definition.

Definition. For any $z \in \mathbb{C}$ with $z \neq 0$, define the "multiple-valued" function

$$\log z = \ln |z| + i \arg(z).$$

Note 3.30.A. Arguably, there is no such thing as a "multiple-valued" function by the very definition of "function." Like the set valued " $\arg(z)$ " encountered in Section 1.8, we can similarly think of log z as defined here as set valued. Brown and Churchill approach it slightly differently. They take the unique value in $\arg(z)$ in the interval $(-\pi, \pi]$ and denote it as Θ . They then define

$$\log z = \ln |z| + i(\Theta + 2n\pi)$$
 where $n \in \mathbb{Z}$.

This is equivalent to the definition above. Sometimes the value Θ is called the *principal argument* of z (see Section 1.6. Exponential Form). We'll use it to define the principal branch of the logarithm. The interval $(-\pi, \pi]$ is not universally accepted for the principal value. Notice that we have $e^{\log z} = z$ for all $z \neq 0$.

Example. In Section 3.29 we saw that if $e^z = 1 + i$ then $z = x + iy = \ln(\sqrt{2}) + (\pi/4 + 2n\pi)i$ for $n \in \mathbb{Z}$. Therefore $\log(1+i) = \ln(\sqrt{2}) + (\pi/4 + 2n\pi)i$ for $n \in \mathbb{Z}$ or, more appropriately, $\log(1+i) = \{\ln(\sqrt{2}) + (\pi/4 + 2n\pi)i \mid n \in \mathbb{Z}\}.$

Definition. The *principal value of* $\log z$ is based on the value of $\arg(z)$ in $(-\pi, \pi]$ which we denote Θ . We define the principal value of $\log z$ as

$$\operatorname{Log} z = \ln |z| + i\Theta.$$

Note. We have that Log z is a "single-valued" function (that is, an actual function). The relationship between Log z and $\log z$ is

$$\log z = \operatorname{Log} z + 2n\pi i$$
 for $n \in \mathbb{Z}$.

(More appropriately, $\log z = \{ \text{Log } z + 2n\pi i \mid n \in \mathbb{Z} \}.$)

Example 3.30.2. With z = 1 we have |z| = 1 and $\arg(z) = \{2n\pi \mid n \in \mathbb{Z}\}$. Therefore $\log 1 = \ln 1 + 2n\pi i = 2n\pi i$ for $n \in \mathbb{Z}$. (More appropriately, $\log 1 = \{2n\pi i \mid n \in \mathbb{Z}\}$.) But $\log 1 = 0$.

Revised: 4/2/2024