## Section 3.31. Branches and Derivatives of Logarithms

Note. In this section Brown and Churchill continue to resolve the "many-valued" versus "single-valued" functions situation with their definition of  $\log z$  and  $\log z$ .

Note 3.31.A. Let  $\alpha$  denote any real number. For any  $z \in \mathbb{C}$  such that  $z = re^{i\theta}$ where r > 0 and  $\theta \in (\alpha, \alpha + 2\pi)$ , we could define  $\log z = \log re^{i\theta} = \ln r + i\theta$ . In polar coordinates we have  $\log z = u(r, \theta) + iv(r, \theta)$  where  $u(r, \theta) = \ln r$  and  $v(r, \theta) = \theta$ . Throughout the domain  $D = \mathbb{C} \setminus \{z = \rho e^{i\alpha} \mid \rho \ge 0\}$  (see the graph below) we have that  $\log z$  is defined and satisfies the polar form of the Cauchy-Riemann equations:  $ru_r(r, \theta) = 1 = v_\theta(r, \theta)$  and  $u_\theta(r, \theta) = 0 = -rv_r(r, \theta)$ . So by Theorem 2.23.A,  $\log z$ (so defined) is analytic in D and  $\frac{d}{dz}[\log z] = e^{-i\theta}(u_r(r, \theta) + iv_r(r, \theta)) = e^{-i\theta}(1/r + i0) = 1/(re^{i\theta}) = 1/z$ . As a special case, with the principal branch of the logarithm we have with  $\alpha = -\pi$  that  $\frac{d}{dz}[\log z] = 1/z$  for all  $z \in \mathbb{C} \setminus \{z \in \mathbb{C} \mid z \in \mathbb{R}, z \le 0\}$ .



Note. The function  $\log z$  defined in the previous note (unfortunately with the same notation as used for the multiple-valued function "log z" from the previous section) is called a *branch* of the logarithm and the set  $\{z = \rho e^{i\alpha} \mid \rho \geq 0\}$  on which log z is not defined is the *branch cut*. The point z = 0 is the *branch point*. These ideas will carry over to other multiple-valued functions in this chapter, each of which will result from trying to take the inverse a periodic function.

Revised: 3/27/2020