Section 3.31. Branches and Derivatives of Logarithms

Note. In this section Brown and Churchill continue to resolve the "many-valued" versus "single-valued" functions situation with their definition of $\log z$ and $\log z$.

Note 3.31.A. Let α denote any real number. For any $z \in \mathbb{C}$ such that $z=r e^{i \theta}$ where $r>0$ and $\theta \in(\alpha, \alpha+2 \pi)$, we could define $\log z=\log r e^{i \theta}=\ln r+i \theta$. In polar coordinates we have $\log z=u(r, \theta)+i v(r, \theta)$ where $u(r, \theta)=\ln r$ and $v(r, \theta)=\theta$. Throughout the domain $D=\mathbb{C} \backslash\left\{z=\rho e^{i \alpha} \mid \rho \geq 0\right\}$ (see the graph below) we have that $\log z$ is defined and satisfies the polar form of the Cauchy-Riemann equations: $r u_{r}(r, \theta)=1=v_{\theta}(r, \theta)$ and $u_{\theta}(r, \theta)=0=-r v_{r}(r, \theta)$. So by Theorem 2.23.A, $\log z$ (so defined) is analytic in D and $\frac{d}{d z}[\log z]=e^{-i \theta}\left(u_{r}(r, \theta)+i v_{r}(r, \theta)\right)=e^{-i \theta}(1 / r+$ $i 0)=1 /\left(r e^{i \theta}\right)=1 / z$. As a special case, with the principal branch of the logarithm we have with $\alpha=-\pi$ that $\frac{d}{d z}[\log z]=1 / z$ for all $z \in \mathbb{C} \backslash\{z \in \mathbb{C} \mid z \in \mathbb{R}, z \leq 0\}$.

Note. The function $\log z$ defined in the previous note (unfortunately with the same notation as used for the multiple-valued function " $\log z$ " from the previous section) is called a branch of the logarithm and the set $\left\{z=\rho e^{i \alpha} \mid \rho \geq 0\right\}$ on which $\log z$ is not defined is the branch cut. The point $z=0$ is the branch point. These ideas will carry over to other multiple-valued functions in this chapter, each of which will result from trying to take the inverse a periodic function.

