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Section 3.34. Trigonometric Functions

Note. In this section we define the complex trigonometric functions and some of

their properties. We also relate them to the real hyperbolic trig functions.

Note. To recap, we have defined the complex exponential function in terms of the

real exponentiation function, the real sine function, and the real cosine function:

ez = ex+iy = ex(cos y + i sin y). We continue this trend of defining new functions in

terms of existing ones.

Note. Since Euler’s formula gives (for x ∈ R) eix = cos x + i sin x and e−ix =

cos x− i sin x, then we can solve for cos x and sin x to get

cos x =
eix + e−ix

2
and sin x =

eix − e−ix

2i
.

This motivates the following definition.

Definition. For all z ∈ C define the cosine and sine functions as

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
.

Note 3.34.A. Since ez is an entire function, then cos z and sin z are entire func-

tions. Notice that the cosine and sine functions of a complex variable agree with

the cosine and sine functions of a real variable when z is real. Therefore, by Theo-

rem 2.27.A, cos z and sin z are the unique entire functions which agree with cos x



Section 3.34. Trigonometric Functions 2

and sin x. They satisfy the expected differentiation properties:

d

dx
[cos z] =

d

dz

[
eiz + e−iz

2

]
=

ieiz − ie−iz

2
=
−eiz + e−iz

2i
= −eiz − e−iz

2i
= − sin z

d

dx
[sin z] =

d

dz

[
eiz − e−iz

2i

]
=

ieiz + ie−iz

2i
=

eiz + e−iz

2
= cos z.

From the definitions we also immediately have sin(−z) = − sin z, cos(−z) = cos z,

and eiz = cos z + i sin z.

Note 3.34.B. In Exercises 3.34.2 and 3.34.3 (Exercises 3.38.2 and 3.38.3 in the

9th edition of the book) you are asked to verify the summation formulas

cos(z1+z2) = cos z1 cos z2−sin z1 sin z2 and sin(z1+z2) = sin z1 cos z2+cos z1 sin z2.

These identities lead to the double angle formulas

sin 2z = 2 sin z cos z and cos 2z = cos2 z − sin2 z

and the cofunction relations

cos(z + π/2) = sin z and sin(z + π/2) = cos z

(sine and cosine are COfunctions because they give equal values for COmplemen-

tary “angles”). We also have the trigonometric version of the Pythagorean The-

orem: cos2 z + sin2 z = 1. The summation formulas give the periodic behavior of

sine and cosine:

cos(z + 2π) = cos z and sin(z + 2π) = sin z

and the following phase shift properties:

cos(z + π) = − cos z and sin(z + π) = − sin z.
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Note. Recall the hyperbolic cosine and sine functions for a real variable y:

cosh y =
ey + e−y

2
and sinh y =

ey − e−y

2
.

These are pronounced “cosh” and “sinh,” respectively. For properties of the hyper-

bolic trig functions, see my online Calculus 2 (MATH 1920) notes on 7.3. Hyperbolic

Functions.

Note. We can use imaginary numbers to relate cosine and cosh, and sine and sinh

as:

cos iy =
ei(iy) + e−i(iy)

2
=

e−y + ey

2
= cosh y,

sin iy =
ei(iy) − e−i(iy)

2i
=

e−y − ey

2i
= i sinh y.

Lemma 3.34.A. The real and imaginary parts of cos z and sin z can be expressed

in terms of sin x, cos x, sinh y, and cosh y, where z = x + iy, as:

sin z = sin x cosh y + i cos x sinh y and cos z = cos x cosh y − i sin x sinh y.

Note 3.34.C. By Lemma 3.34.A and the facts that cos2 x+sin2 x = 1 and cosh2 y−

sinh2 y = 1 we have that (this is Exercise 3.34.7; it is Exercise 3.38.7 in the 9th

edition of the book):

| sin z|2 = (sin x cosh y)2 + (cos x sinh y)2 = sin2 x cosh2 y + cos2 x sinh2 y

= sin2 x cosh2 y + (1− sin2 x) sinh2 y = sin2 x(cosh2 y − sinh2 y) + sinh2 y

= sin2 x + sinh2 y,

http://faculty.etsu.edu/gardnerr/1920/12/c7s3.pdf
http://faculty.etsu.edu/gardnerr/1920/12/c7s3.pdf
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and

| cos z|2 = (cos x cosh y)2 + (sin x sinh y)2 = cos2 x cosh2 y + sin2 x sinh2 y

= cos2 x cosh2 y + (1− cos2 x) sinh2 y = cos2 x(cosh2 y − sinh2 y) + sinh2 y

= cos2 x + sinh2 y.

Since sinh y = (ey − e−y)/2 is unbounded (consider y → ∞) then neither cos z

nor sin z is bounded (they grow exponentially along the positive imaginary axis),

unlike their real counterparts both of which are bounded below by −1 and above

by 1. This turns out not to be surprising since we will see in Liouville’s Theorem

in Section 4.53 that the only bounded entire functions are constant functions.

Definition. A zero of a function f(z) is a z0 ∈ C for which f(z0) = 0.

Note. The zeros of a polynomial function are often called “roots” (especially in an

algebraic setting). The study of the location of the zeros of functions of a complex

variable is a vibrant area of contemporary study. We know the zeros of the real

functions cos x and sin x. The following result proves that these are the only zeros

for cos z and sin z, respectively.

Lemma 3.34.B. The only zeros of sin z are the real numbers z = nπ where n ∈ Z.

The only zeros of cos z are the real numbers z = π/2 + nπ where n ∈ Z.
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Definition. We now define the four remaining trigonometric functions as functions

of a complex variable. We have

tan z =
sin z

cos z
, cot z =

cos z

sin z
,

sec z =
1

cos z
, csc z =

1

sin z
.

Note. Notice that none of tan z, cot z, sec z, nor csc z are entire functions. In fact,

they have singularities at the zeros of either sin z (for cot z and csc z) or cos z (for

tan z and sec z). The summation formulas for cos z and sin z allow us to establish

the periodic nature of these functions (the periods of tan z and cot z are π and the

periods of sec z and csc z are 2π). We can use the definitions in terms of cos z and

sin z to establish the familiar differentiation properties:

d

dz
[tan z] = sec2 z,

d

dz
[cot z] = − csc2 z,

d

dz
[sec z] = sec z tan z,

d

dz
[csc z] = − csc z cot z.
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