## Section 4.41. Some Examples

Note. In this section we consider several examples of integrals of a complex valued function of a complex variable along a contour.

Example 4.41.1. Let $C$ be given by $z(\theta)=2 e^{i \theta}, \theta \in[-\pi / 2, \pi / 2]$ (the right half of the circle $|z|=2$ ). See Figure 41. We now evaluate $I=\int_{C} \bar{z} d z$.


FIGURE 41

By definition of contour integral,

$$
I=\int_{-\pi / 2}^{\pi / 2} \overline{2 e^{i \theta}} \frac{d}{d \theta}\left[2 e^{i \theta}\right] d \theta=4 \int_{-\pi / 2}^{\pi / 2} e^{-i \theta}\left(i e^{i \theta}\right) d \theta=4 i \int_{-\pi / 2}^{\pi / 2} d \theta=4 \pi i
$$

Example 4.40.2. Let $C_{1}$ be the polygonal line $O A B$ as in Figure 42. We evaluate the integral

$$
I_{1}=\int_{C_{1}} f(z) d z=\int_{O A} f(z) d z+\int_{A B} f(z) d z
$$

where $f(z)=f(x+i y)=y-x-i 3 x^{2}$. We parameterize $O A$ as $z=0+i y, y \in[0,1]$ (so $\left.z^{\prime}(t)=z^{\prime}(y)=i\right)$ and $A B$ as $z=x+i, x \in[0,1]$ (so $\left.z^{\prime}(t)=z^{\prime}(x)=1\right)$. Notice that on $O A$ (since $x=0) f(z)=f(x+i y)=f(i y)=y$, and on $A B($ since $y=1)$

$$
\begin{aligned}
& f(z)=f(x+i y)=1-x-i 3 x^{2} \text {. Then } \\
& \int_{O A} f(z) d z+\int_{A B} f(z) d z=\int_{O A}(y)(i) d y+\int_{A B}\left(1-x-i 3 x^{2}\right)(1) d x \\
& =\left.\frac{i}{2} y^{2}\right|_{0} ^{1}+\left.\left(x-\frac{1}{2} x^{2}\right)\right|_{0} ^{1}-\left.i x^{3}\right|_{0} ^{1}=\frac{i}{2}+\frac{1}{2}-i=\frac{1-i}{2} .
\end{aligned}
$$

Let $C_{2}$ be the line segment $O B$ as in Figure 42. We parameterize $O B$ as $z=x+i x$, $x \in[0,1]$ (so $\left.z^{\prime}(t)=z^{\prime}(x)=1+i\right)$. On $O B($ since $y=x) f(z)=f(x+i y)=$ $x-x-i 3 x^{2}=-i 3 x^{2}$. So another integral is

$$
I_{2}=\int_{C_{2}} f(z) d z=\int_{0}^{1}\left(-i 3 x^{2}\right)(1+i) d x=3(1-i) \int_{0}^{1} x^{2} d x=(1-i)
$$

Notice that $I_{1} \neq I_{2}$, even though the integrals are along contours that both start at $O$ and end at $B$. So, in this example at least, there is some type of path dependence on the value of a contour integral (recall, from the Fundamental Theorem of Calculus, that a real integral only depends on the starting point $a$, the ending point $b$, and an antiderivative). In fact, we can integrate around the simple closed contour $C_{1}-C_{2}$ (along the closed polygonal line $O A B O$ ) to get

$$
\int_{C_{1}-C_{2}} f(z) d z=\int_{C_{1}} f(z) d z-\int_{C_{2}} f(z) d z=I_{1}-I_{2}=\frac{-1+i}{2} .
$$

We will often get integrals to have values of 0 over simple closed contours. This will be addressed in detail in Section 48.

Example 4.41.3. In the previous example, we saw that the value of a contour integral can depend the path and not just on the endpoints of the path. We now consider an example where we do have path independence. Consider $f(z)=z$ and let $C$ be any smooth arc given by, say, $z(t), t \in[a, b]$, where $z(a)=z_{1}$ and $z(b)=z_{2}$. We then have

$$
\begin{aligned}
& \int_{C} z d z=\int_{a}^{b} z(t) z^{\prime}(t) d t=\int_{a}^{b} \frac{d}{d t}\left[\frac{(z(t))^{2}}{2}\right] d t \\
& =\left.\frac{(z(t))^{2}}{2}\right|_{a} ^{b}=\frac{(z(b))^{2}-(z(a))^{2}}{2}=\frac{z_{2}^{2}-z_{1}^{2}}{2}
\end{aligned}
$$

We can generalize this example to a contour $C$ which consists of piecewise smooth $\operatorname{arcs} C_{1}, C_{2}, \ldots, C_{n}$ joined end to end. With $z_{k}$ and $z_{k+1}$ as the endpoints of $C_{k}$, we have

$$
\begin{aligned}
& \int_{C} z d z=\int_{C_{1}+C_{2}+\cdots+C_{n}} z d z=\sum_{k=1}^{n} \int_{C_{k}} z d z \\
= & \sum_{k=1}^{n} \int_{z_{k}}^{z_{k+1}} z d z=\sum_{k=1}^{n} \frac{z_{k+1}^{2}-z_{k}^{2}}{2}=\frac{z_{n+1}^{2}-z_{1}^{2}}{2} .
\end{aligned}
$$

Therefore the value of the integral depends only on the endpoints ( $z_{1}$ and $z_{2}$ in the first case, $z_{1}$ and $z_{n+1}$ in the second case). The reason this is the case is related to the fact that the function $f(z)=z$ has an antiderivative valid in the entire complex plane.

