Section 4.42. Examples with Branch Cuts

Note. In this section we consider examples of integrals of a complex valued function involving branches of the logarithm.

Example 4.42.1. Let C be the semicircular path $z=3 e^{i \theta}, 0 \leq \theta \leq \pi$ (see Figure 44), and consider the branch of the square root function $f(z)=z^{1 / 2}=\exp \left(\frac{1}{2} \log z\right)$ where $|z|>0$ and $0<\arg z<2 \pi$. Notice that f is not defined at $z=3 \in C$ but we will see that the contour integral is defined on C (similar to how we might integrate in the real setting up to a vertical asymptote of a real function; this is an example of an improper integral).

FIGURE 44

Now

$$
\begin{aligned}
f(z(\theta)) & =\exp \left(\frac{1}{2} \log \left(3 e^{i \theta}\right)\right)=\exp \left(\frac{1}{2}(\ln 3+i \theta)\right) \\
& =\exp \left(\frac{1}{2} \ln 3\right) \exp \left(\frac{1}{2} i \theta\right)=\sqrt{3} e^{i \theta / 2}
\end{aligned}
$$

where $\theta \in(0, \pi]$. Since $z^{\prime}(\theta)=3 i e^{i \theta}$ then

$$
f(z(\theta)) z^{\prime}(\theta)=\left(\sqrt{3} e^{i \theta / 2}\right)\left(3 i e^{i \theta}\right)=3 \sqrt{3} i e^{i 3 \theta / 2}=i 3 \sqrt{3} \cos \frac{3 \theta}{2}-3 \sqrt{3} \sin \frac{3 \theta}{2}
$$

where $\theta \in(0, \pi]$. We then have

$$
\begin{aligned}
\int_{C} z^{1 / 2} d z & =\int_{0}^{\pi} f(z(\theta)) z^{\prime}(\theta) d \theta=\int_{0}^{\pi}\left(i 3 \sqrt{3} \cos \frac{3 \theta}{2}-3 \sqrt{3} \sin \frac{3 \theta}{2}\right) d \theta \\
& =i \int_{0}^{\pi}\left(3 \sqrt{3} \cos \frac{3 \theta}{2}\right) d \theta-\int_{0}^{\pi}\left(3 \sqrt{3} \sin \frac{3 \theta}{2}\right) d \theta \\
& =i \lim _{a \rightarrow 0^{+}} \int_{a}^{\pi}\left(3 \sqrt{3} \cos \frac{3 \theta}{2}\right) d \theta-\lim _{a \rightarrow 0^{+}} \int_{a}^{\pi}\left(3 \sqrt{3} \sin \frac{3 \theta}{2}\right) d \theta \\
& =\left.\lim _{a \rightarrow 0^{+}}\left(i 2 \sqrt{3} \sin \frac{3 \theta}{2}+2 \sqrt{3} \cos \frac{3 \theta}{2}\right)\right|_{a} ^{\pi} \\
& =\left(i 2 \sqrt{3} \sin \frac{3 \pi}{2}+2 \sqrt{3} \cos \frac{3 \pi}{2}\right)-(i 2 \sqrt{3} \sin 0+2 \sqrt{3} \cos 0) \\
& =-i 2 \sqrt{3}-2 \sqrt{3}=-2 \sqrt{3}(i+1)
\end{aligned}
$$

Notice that the nonexistence of the integrand at $z=3$ disappeared in the computation with the limit and the fact that the real and imaginary parts have antiderivatives valid at $z=3$ (or $\theta=0$ as it appears in the computation). But the branch of $f(z)=z^{1 / 2}$ used here also has an antiderivative defined on C except at $z=3$. That is, f is piecewise continuous on C if we extend the definition of f to $z=3$ by defining $f(3)=3 \sqrt{3} i$ (the value of an integral is not affected by changing the value of the integrand at a single point, and this change gives us the piecewise continuity we need to use complex antiderivatives) and so we can more quickly compute:

$$
\begin{aligned}
& \int_{C} f(z) d z=\int_{0}^{\pi} f(z(\theta)) z^{\prime}(\theta) d \theta=3 \sqrt{3} i \int_{0}^{\pi} e^{i 3 \theta / 2} d \theta \\
& =\left.2 \sqrt{3} e^{i 3 \theta / 2}\right|_{0} ^{\pi}=2 \sqrt{3}\left(e^{3 i \pi / 2}-1\right)=-2 \sqrt{3}(i+1)
\end{aligned}
$$

However, we will largely continue to evaluate such integrals using limits and giving rigorous computations.

Example 4.42.2. Suppose that C is the positively oriented circle $z=R e^{i \theta}$, $-\pi \leq \theta \leq \pi$ (see Figure 45). Let a denote any nonzero real number. Using the principal branch of z^{a-1} we have $f(z)=z^{a-1}=\exp ((a-1) \log z),|z|>0$ and $-\pi<\operatorname{Arg} z<\pi$.

We now consider $\int_{C} z^{a-1} d z$. We have

$$
f(z(\theta)) z^{\prime}(\theta)=\left(R e^{i \theta}\right)^{a-1}\left(R i e^{i \theta}\right)=i R^{a} e^{i a \theta}=i R^{a} \cos a \theta-R^{a} \sin a \theta
$$

Notice that $f(z(\theta)) z^{\prime}(\theta)$ is continuous for $\theta \in(-\pi, \pi)$, so that it is piecewise continuous on $[-\pi, \pi]$ (by extending f at the endpoints to get continuity, as in the previous example). So

$$
\begin{aligned}
& \int_{C} f(z) d z=\int_{-\pi}^{\pi} f(z(\theta)) z^{\prime}(\theta) d \theta=i R^{a} \int_{-\pi}^{\pi} e^{i a \theta} d \theta \\
= & \left.i R^{a} \frac{e^{i a \theta}}{i a}\right|_{-\pi} ^{\pi}=\frac{R^{a}}{a}\left(e^{i a \pi}-e^{-i a \pi}\right)=\frac{R^{a}}{a}(2 i \sin (a \pi)) .
\end{aligned}
$$

This holds for all nonzero real a. When a is a nonzero integer (say $a=n+1 \in \mathbb{Z}$, we get $\int_{C} z^{n} d z=\frac{R^{n+1}}{n+1} 2 i \sin ((n+1) \pi)=0$. Brown and Churchill observe that "if a is allowed to be zero" (which it is not!), then $\int_{C} \frac{1}{z} d z=2 \pi i$. This result will hold later, but not from the computation performed here.

