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Section 4.44. Antiderivatives

Note. Recall that the Fundamental Theorem of Calculus, Part 2 states:

If f is continuous at every point of [a, b] and if F is any

antiderivative of f on [a, b], then

∫ b

a

f(x) dx = F (b) − F (a).

In this section we see that the same result does not exactly hold in the complex

setting. The complex result is heavily related to the existence of an antiderivative,

though.

Theorem 4.44.A. Suppose that a function f(z) is continuous on a domain D.

The following are equivalent:

(a) f(z) has an antiderivative F (z) throughout D;

(b) the integrals of f(z) along contours lying entirely in D and extending from any

fixed point z1 to any fixed point z2 all have the same value, namely
∫ z2

z1

f(z) dz = F (z)
∣

∣

∣

z2

z1

= F (z2) − F (z1)

where F (z) is the antiderivative in statement (a);

(c) the integrals of f(z) around closed contours lying entirely in D all have value

zero.

Note. We prove Theorem 4.44.A in the next section and illustrate its application

in this section.
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Example 4.43.A. If p is a polynomial function, then it has an antiderivative P

such that P ′ = p throughout the entire complex plane. So, by Theorem 4.44.A

part (b), for any contour joining z1, z2 ∈ C we have
∫ z2

z1

p(z) dz = P (z2) − P (z1).

Example 4.44.2. Consider f(z) = 1/z2 and C = {z = 2eiθ | θ ∈ [−π, π]}. We

have F (z) = −1/z is an antiderivative of f valid on C\{0}. So, by Theorem 4.44.A

part (b),

∫

C

dz

z2
= 0 since C starts and stops at the same point. In fact, we would

expect many integrals along closed contours to be 0. This is not the case for all

functions, though.

Example 4.44.3. Consider f(z) = 1/z. Notice that f does not have an an-

tiderivative which is valid on any domain containing the contour C = {z = 2eiθ |
θ ∈ [−π, π]}, due to the presence of the branch cut. If Theorem 4.44.A did apply,

then the integral would have to be 0 by part (c) of the theorem. We now show that

the integral is not 0. Let C1 = {z = 2eiθ | θ ∈ [−π/2, π/2]}; see Figure 50. The

principal branch of the logarithm, Log z = ln r + iΘ where r > 0 and Θ ∈ (−π, π),

is an antiderivative of f which is valid on domain D = C \ {x ∈ R | x ≤ 0}
containing C1. So

∫

C1

dz

z
= Log z

∣

∣

∣

2i

−2i
= Log (2i) − Log (−2i) =

(

ln 2 + i
π

2

)

−
(

ln 2 − i
π

2

)

= πi.

Let C2 = {z = 2eiθ | θ ∈ [π/2, 3π/2]}; see Figure 51. The branch of the logarithm,

log z = ln r+ iθ where r > 0 and θ ∈ (0, 2π), is an antiderivative of f which is valid

on domain D = C \ {x ∈ R | x ≥ 0} containing C2. So
∫

C2

dz

z
= log z

∣

∣

∣

−2i

2i
= log(−2i) − log(2i) =

(

ln 2 + i
3π

2

)

−
(

ln 2 + i
π

2

)

= πi.
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We now see that

∫

C

dz

z
=

∫

C1+C2

dz

z
=

∫

C1

dz

z
+

∫

C2

dz

z
= πi + πi = 2πi.

Example 4.44.4. Consider f(z) = z1/2 = exp
(

1
2
log z

)

=
√

reiθ/2, where r > 0

and θ ∈ (0, 2π), and let C1 be any contour from z = −3 to z = 3 that lies in

the open upper half plane, except for its endpoints; see Figure 52. Notice that

f(z) is not defined at the endpoint z = 3, but this does not affect the integral

as argued in Section 42. In this example, Brown and Churchill replace the given

branch f(z) of z1/2 with a branch f1(z) which equals the given branch at all points

on the contour, except that the new branch is defined at z = 3: f1(z) = z1/2 =

exp
(

1
2 log z

)

=
√

reiθ/2, where r > 0 and θ ∈ (−π/2, 3π/2). Since f1(z) equals f(z),

except at a single point, on the contour, then the integrals will be the same since

a limit as z → 3 along C1 is the same for both f(z) and f1(z) (and similarly for

antiderivatives F (z) = F1(z), respectively). But f1(z) has an antiderivative valid on
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a domain containing C1, so that Theorem 4.44.A can be used. An antiderivative for

f1(z) is F1(z) = 2
3
z3/2 = 2

3
r3/2ei3θ/2, where r > 0 and θ ∈ (−π/2, 3π/2). Therefore,

by Theorem 4.44.A,

∫

C

f(z) dz =

∫

C1

f1(z) dz = F1(z)
∣

∣

∣

3

−3
= F1(z)

∣

∣

∣

3ei0

3eiπ

=
2

3
33/2ei3(0)/2 − 2

3
33/2ei3(π)/2 = 2

√
3(ei0 − ei3π/2) = 2

√
3(1 + i).

The fact that we can evaluate the integral by knowing very little about the contour

from z = −3 to z = 3, fore shadows the Cauchy Integral Formula in Section 50.
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