Section 4.45. Proof of the Theorem

Note. We now prove the result from the previous section. We start by restating the result.

Theorem 4.44.A. Suppose that a function $f(z)$ is continuous on a domain D. The following are equivalent:
(a) $f(z)$ has an antiderivative $F(z)$ throughout D;
(b) the integrals of $f(z)$ along contours lying entirely in D and extending from any fixed point z_{1} to any fixed point z_{2} all have the same value, namely

$$
\int_{z_{1}}^{z_{2}} f(z) d z=\left.F(z)\right|_{z_{1}} ^{z_{2}}=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

where $F(z)$ is the antiderivative in statement (a);
(c) the integrals of $f(z)$ around closed contours lying entirely in D all have value zero.

Proof. First we show $(\mathrm{a}) \Longrightarrow(\mathrm{b})$. Suppose $f(z)$ has an antiderivative $F(z)$ on the domain D. Let C be a contour from z_{1} and z_{2} that is smooth, lies in D and has parametric representation $z=z(t)$ where $a \leq t \leq b$. Then by Exercise 4.39 .5 we have

$$
\frac{d}{d t}[F(z(t))]=F^{\prime}(z(t)) z^{\prime}(t)=f(z(t)) z^{\prime}(t) \text { where } a \leq t \leq b
$$

So

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{Z} f(z(t)) z^{\prime}(t) d t \text { by definition (see Section 4.40) } \\
& =\left.F(z(t))\right|_{t=a} ^{t=b}=F(z(b))-F(z(a)) \text { by Note 4.38.A } \\
& =F\left(z_{2}\right)-F\left(z_{1}\right) \text { since } z_{1}=z(a) \text { and } z_{2}=z(b)
\end{aligned}
$$

So (b) holds in the event that C is smooth. Now a contour is piecewise smooth by definition (see Section 4.39), so for C any contour that is piecewise smooth, say C consists of the n smooth contours $C_{1}, C_{2}, \ldots, C_{n}$ (with C_{1} a smooth contour from $z(a)=z_{1}$ to z_{2}, C_{2} a smooth contour from z_{2} to z_{3}, \ldots, and C_{n} a smooth contour from z_{n} to $\left.z_{n+1}=z(b)\right)$, then

$$
\begin{aligned}
\int_{C} f(z) d z & =\sum_{k=1}^{n} \int_{C_{k}} f(z) d z \text { by Note 4.40.C and induction } \\
& =\sum_{k=1}^{n}\left(F\left(z_{k+1}\right)-F\left(z_{k}\right)\right) \text { by the proof above, since each } C_{k} \text { is smooth } \\
& =F(b)-F(a)
\end{aligned}
$$

That is, (b) holds.
Next, we show $(\mathrm{b}) \Longrightarrow(\mathrm{c})$. Suppose that integration of $f(z)$ is independent of the contour in D and instead only depends on the endpoints of the contour. Let C be any closed contour in D and let z_{1} and z_{2} be two distinct points on C. Form paths C_{1} and C_{2} (see Figure 53).

Figure 53

Since we hypothesize that the values of integrals are independent of contours, then we have $\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z$ or, by Notes 4.40.B and 4.40.C,

$$
\begin{gathered}
0=\int_{C_{1}} f(z) d z-\int_{C_{2}} f(z) d z=\int_{C_{1}} f(z) d z+\int_{-C_{2}} f(z) d z \\
=\int_{C_{1}-C_{2}} f(z) d z=\int_{C} f(z) d z
\end{gathered}
$$

So integrals of $f(z)$ around closed contours lying entirely in D all have value zero and (c) holds.

Finally, we show $(\mathrm{c}) \Longrightarrow(\mathrm{a})$. Suppose integrals of $f(z)$ around closed contours lying entirely in D all have value zero. Let C_{1} and C_{2} denote any two contours lying in D from a point z_{1} to a point z_{2}. Then $C=C_{1}-C_{2}$ is a closed contour in D and so by hypothesis,

$$
\begin{aligned}
0 & =\int_{C} f(z) d z=\int_{C_{1}-C_{2}} f(z) d z \\
& =\int_{C_{1}} f(z) d z-\int_{C_{2}} f(z) d z \text { by Note 4.40.C }
\end{aligned}
$$

and so $\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z$ (in fact, we have shown that $(\mathrm{c}) \Longrightarrow(\mathrm{b})$ here). Let $z_{0} \in D$ and define function $F(z)$ as $F(z)=\int_{z_{0}}^{z} f(s) d z$ where $z \in D$. The path independence of integrals shows that F is well-defined. We now show that $F^{\prime}(z)=f(z)$ on D. Let $z+\Delta z$ be any point distinct from z and lying in some neighborhood of z that is small enough to be contained in D (such a neighborhood exists since D is hypothesized to be open). Then

$$
\begin{aligned}
F(z+\Delta z)-F(z) & =\int_{z_{0}}^{z+\Delta z} f(s) d s-\int_{z_{0}}^{z} f(s) d s \\
& =\int_{z}^{z+\Delta z} f(s) d s \text { by Note 4.40.C. }
\end{aligned}
$$

Since Δz lies in a neighborhood of z then we see that Δz may be selected as a line segment (see Figure 54).

Figure 54
Since $\int_{z}^{z+\Delta z} d s=\Delta z$ by Exercise 4.42.5 (Exercise 4.46.5 in the 9th edition of the book), we have

$$
\frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(z) d s=\frac{f(z)}{\Delta z} \int_{z}^{z+\Delta z} d s=f(z)
$$

So

$$
\begin{gathered}
\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)=\frac{\int_{z_{0}}^{z+\Delta z} f(s) d s-\int_{z_{0}}^{z} f(s) d s}{\Delta z}-f(z) \\
=\frac{1}{\Delta z}\left(\int_{z}^{z+\Delta z} f(s) d s\right)-\frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(z) d s=\frac{1}{\Delta z} \int_{z}^{z+\Delta z}(f(s)-f(z)) d s
\end{gathered}
$$

Since f is continuous at z by hypothesis, then for all $\varepsilon>0$ there exists $\delta>0$ such that $|f(s)-f(z)|<\varepsilon$ whenever $|s-z|<\delta$. Consequently, if $|\Delta z|<\delta$ then

$$
\begin{aligned}
\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right| & =\left|\frac{1}{\Delta z} \int_{z}^{z+\Delta z}(f(s)-f(z)) d s\right| \\
& <\frac{1}{|\Delta z|} \varepsilon|\Delta z| \text { by Theorem 4.43.A } \\
& =\varepsilon .
\end{aligned}
$$

So by the definition of limit (see Section 2.15),

$$
\lim _{\Delta z \rightarrow 0} \frac{F(z+\Delta z)-F(z)}{\Delta z}=f(z) .
$$

That is, $F^{\prime}(z)=f(z)$ and so (a) holds.

