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Section 4.45. Proof of the Theorem

Note. We now prove the result from the previous section. We start by restating

the result.

Theorem 4.44.A. Suppose that a function f(z) is continuous on a domain D.

The following are equivalent:
(a) f(2) has an antiderivative F(z) throughout D;

(b) the integrals of f(z) along contours lying entirely in D and extending from any
fixed point z; to any fixed point 29 all have the same value, namely

22

/ Y ) ds = F()|” = Fz) — Fz)

21

where F'(z) is the antiderivative in statement (a);

(c) the integrals of f(z) around closed contours lying entirely in D all have value

Z€ero.

Proof. First we show (a) = (b). Suppose f(z) has an antiderivative F'(z) on the
domain D. Let C be a contour from z; and zo that is smooth, lies in D and has
parametric representation z = z(t) where a < ¢t < b. Then by Exercise 4.39.5 we
have

d

E[F(Z(t))] = F'(2(1))2'(t) = f(2(t))7'(t) where a <t < D.
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So

/ f(z)dz = / f(z t) dt by definition (see Section 4.40)
c
= F(2(t))[I=0 = F(2(b)) — F(2(a)) by Note 4.38.A

t=a

= F(z9) — F(z1) since z; = z(a) and z5 = z(b)

So (b) holds in the event that C' is smooth. Now a contour is piecewise smooth by
definition (see Section 4.39), so for C' any contour that is piecewise smooth, say C'
consists of the n smooth contours C1, Cs, ..., C, (with C; a smooth contour from
z(a) = z1 to z3, C5 a smooth contour from 2z, to 23, ..., and C), a smooth contour

from z, to 2,41 = 2(b)), then

/ f(z)dz = Z z) dz by Note 4.40.C and induction
C

= Z(F(zkH) — F(zx)) by the proof above, since each C} is smooth
k=1
= F(b) — F(a).
That is, (b) holds.
Next, we show (b) = (c¢). Suppose that integration of f(z) is independent of
the contour in D and instead only depends on the endpoints of the contour. Let

C be any closed contour in D and let z; and 29 be two distinct points on C'. Form

paths C; and Cy (see Figure 53).
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Figure 53
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Since we hypothesize that the values of integrals are independent of contours, then

we have fCl 2)dz = fC z)dz or, by Notes 4.40.B and 4.40.C,

Of(Z)dZ— f(z)dz = f()dz+ f(Z)dZ

:/Cl dz_/f

So integrals of f(z) around closed contours lying entirely in D all have value zero
and (c) holds.

Finally, we show (c) = (a). Suppose integrals of f(z) around closed contours
lying entirely in D all have value zero. Let C; and C5 denote any two contours
lying in D from a point z; to a point z5. Then C' = C — (5 is a closed contour in

D and so by hypothesis,

0 = /Cf(z)dz:/cr@f(z)dz

= f(,z) dz— [ f(z)dz by Note 4.40.C
Cs

and so [ f(z)dz = fc z)dz (in fact, we have shown that (¢) = (b) here).
Let zg € D and define function F(z) as F(z f f(s)dz where z € D. The
path independence of integrals shows that F' is well-defined. We now show that
F'(z) = f(z) on D. Let z + Az be any point distinct from z and lying in some
neighborhood of z that is small enough to be contained in D (such a neighborhood

exists since D is hypothesized to be open). Then

F(z+Az)—F(z) = /ZOZ+AZf(S)dS—/Z:f(S)dS

z4+Az
— / f(s)ds by Note 4.40.C.

Since Az lies in a neighborhood of z then we see that Az may be selected as a line

segment (see Figure 54).
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Since fZHAZ ds = Az by Exercise 4.42.5 (Exercise 4.46.5 in the 9th edition of the

book), we have

z+Az z+Az
~ ) r@e=L2 [ e )

So

S22 f(s)ds — [ f(s) ds

F(z+ Az) — F(2) () = - )

Az
:é(/:JFAZf(s)ds)—é/:j%zf(z)ds:é zZ+AZ(f(S)—f(Z)>dS.

Since f is continuous at z by hypothesis, then for all € > 0 there exists ¢ > 0 such

that |f(s) — f(2)| < € whenever |s — z| < 0. Consequently, if |Az| < ¢ then

F(z+ Az)— F A

FELD2TD | = |5 [0 - s
< ﬁs\Ad by Theorem 4.43.A
= £&.

So by the definition of limit (see Section 2.15),

lim F(z+ Az) — F(z) ().

Az—0 Az

That is, F'(z) = f(2) and so (a) holds. 1
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