Section 4.51. An Extension of the Cauchy Integral Formula

Note. In the previous section, we saw that the value of an analytic function can be expressed as a certain type of integral. In this section, we state a result that expresses the nth derivative of an analytic function as a certain type of integral.

Theorem 4.51.A. General Cauchy Integral Formula.

Let f be analytic inside and on a simple closed contour C, taken in the positive sense. If z_{0} is any point interior to C then $f^{(n)}\left(z_{0}\right)$ exists and

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}} \text { for } n \in \mathbb{N} \cup\{0\} .
$$

Note. This is the first time we have seen that an analytic function (that is, a function which has a first derivative on an open set) is infinitely differentiable.

Note. When $n=0$, Theorem 4.51.A gives the Cauchy Integral Formula (Theorem 4.50.A). We give a proof of the case when $n=1$ below (in Lemma 4.51.A) and a proof for $n=2$ is outlined in Exercise 4.52.9 (in Exercise 4.57.9 in the 9th edition of the book). A proof (in an even more general setting) of Theorem 4.51.A for all $n \in \mathbb{N}$ can be found in my online notes for Complex Analysis 1 (MATH 5510) on IV.5. Cauchys Theorem and Integral Formula (see Theorem IV.5.8). Now, we consider some examples in which we use Theorem 4.55.A to evaluate integrals.

Example 4.51.1. Let C be the positively oriented unit circle $|z|=1$ and $f(z)=$ $e^{2 z}$. Then

$$
\int_{C} \frac{e^{2 z} d z}{z^{4}}=\int_{C} \frac{f(z) d z}{(z-0)^{3+1}}=\frac{2 \pi i}{3!} f^{\prime \prime \prime}(0)=\frac{\pi i}{3} 8 e^{2(0)}=\frac{8 \pi i}{3} .
$$

Example 4.51.2. Let z_{0} be any point interior to a positively oriented simple closed curve C. When $f(z)=1$ and $n=0$, we have $\int_{C} \frac{d z}{\left(z-z_{0}\right)^{1}}=2 \pi i$ and for $n \in \mathbb{N}$,

$$
\int_{C} \frac{d z}{\left(z-z_{0}\right)^{n+1}}=\frac{2 \pi i}{n!} f^{(n)}\left(z_{0}\right)=0
$$

Example 4.51.A. (Example 4.55.3 in the 9th edition of the book.) Let $n \in \mathbb{N} \cup\{0\}$ and let $f(z)=\left(z^{2}-1\right)^{n}$. Then the General Cauchy Integral Formula (Theorem 4.51.A) implies

$$
\frac{d^{n}}{d z^{n}}\left[\left(z^{2}-1\right)^{n}\right]=\frac{n!}{2 \pi i} \int_{C} \frac{\left(s^{2}-1\right)^{n} d s}{(s-z)^{n+1}}
$$

where C is any simple closed contour around z. The Legendre polynomials are defined as

$$
P_{n}(z)=\frac{1}{n!2^{n}} \frac{d^{n}}{d z^{n}}\left[\left(z^{2}-1\right)^{n}\right] \text { where } n \in \mathbb{N} \cup\{0\}
$$

so we can write

$$
P_{n}(z)=\frac{1}{2^{n+1} \pi i} \int_{C} \frac{\left(s^{2}-1\right)^{n} d s}{(s-z)^{n+1}}
$$

Since

$$
\frac{\left(s^{2}-1\right)^{n}}{(s-1)^{n+1}}=\frac{((s-1)(s+1))^{n}}{(s-1)^{n+1}}=\frac{(s+1)^{n}}{s-1}
$$

then we have

$$
P_{n}(1)=\frac{1}{2^{n+1} \pi i} \int_{C} \frac{(s+1)^{n} d s}{s-1} \text { for } n \in \mathbb{N} \cup\{0\}
$$

and with $f(s)=(s+1)^{n}$ we know

$$
\int_{C} \frac{f(s) d s}{s-z}=2 \pi i f^{(0)}(z)=2 \pi i f(z) \text { or } \int_{C} \frac{(s+1)^{n}}{s-(1)} d s=2 \pi i((1)+1)^{n}=2^{n+1} \pi i
$$

so that

$$
P_{n}(1)=\frac{1}{2^{n+1} \pi i}\left(2^{n+1} \pi i\right)=1 \text { for } n \in \mathbb{N} \cup\{0\}
$$

In Exercise 4.52 .8 (Exercise 4.57 .8 in the 9 th edition of the book) it is to be shown that $P_{n}(-1)=(-1)^{n}$ for $n \in \mathbb{N} \cup\{0\}$.

Lemma 4.51.A. Let f be analytic inside and on a simple closed contour C, taken in the positive sense. If z is any point interior to C then $f^{\prime}(z)$ exists and

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{(s-z)^{2}} d s
$$

