## Section 4.54. Maximum Modulus Principle

Note. In this section we present a major result which has many applications. Some of the applications are illustrated in the supplement to this section.

Lemma 4.54.A. Suppose that $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ at each point $z$ in some neighborhood $\left|z-z_{0}\right|<\varepsilon$ in which $f$ is analytic. Then $f(z)$ has the constant value $f\left(z_{0}\right)$ throughout that neighborhood.

Note. We use Lemma 4.54.A to prove the Maximum Modulus Theorem, but first we elevate equation (2) from the proof of Lemma 4.51.A to the status of a theorem itself.

## Theorem 4.54.B. Gauss's Mean Value Theorem.

Let $f$ be analytic on and inside the positively oriented circle $\left|z-z_{0}\right|=\rho$ centered at $z_{0} \in \mathbb{C}$. Then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+\rho e^{i \theta}\right) d \theta
$$

Note. Recall that, by definition, the average value of a real-valued function of a real variable $f$ on $[a, b]$ is

$$
\operatorname{Av}(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

It is this sense that the term "mean" is used in Gauss's Mean Value Theorem.

## Theorem 4.54.C. The Maximum Modulus Theorem.

If a function $f$ is analytic and not constant in a given domain $D$, then $|f(z)|$ has no maximum value in $D$. That is, there is no point $z_{0} \in D$ such that $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ for all points $z \in D$.

## Theorem 4.54.D. Maximum Modulus Theorem, Alternative Version.

 Suppose that a function $f$ is continuous on a closed bounded region $R$ and that it is analytic and not constant in the interior of $R$. Then the maximum value of $|f(z)|$ on $R$, which is always reached (by Theorem 2.18.3) occurs somewhere on the boundary of $R$ and never in the interior.Theorem 4.54.E. Let $f$ be continuous on a closed bounded region $R$, and analytic and not constant on the interior of $R$. For $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$, function $u(x, y)$ attains its maximum value in $R$ on the boundary of $R$ and not in the interior.

Note. The proof of the following is to be given in Exercise 4.54.3.

## Corollary 4.54.F. The Minimum Modulus Theorem.

Let a function $f$ be continuous on a closed bounded region $R$, and let it be analytic and not constant throughout the interior of $R$. Assuming that $f(z) \neq 0$ anywhere in $R$, then $|f(z)|$ has a minimum value $m$ in $R$ and the minimum is attained at some boundary point of $R$ and is never attained at an interior point of $R$.

Note. Another version of the Maximum Modulus Theorem is the following, a proof of which is given in my online class notes for Complex Analysis (MATH 5510-20) on Section VI.1. The Maximum Principle.

## Theorem 4.54.G. Maximum Modulus Theorem for Unbounded Domains (Simplified 1).

Let $r>0$ and suppose $f$ is analytic for $|z|>r$, continuous on $|z|=r$, bounded by $M$ on $|z|=r$, and $\lim _{|z| \rightarrow \infty}|f(z)| \leq M$. Then $|f(z)| \leq M$ on $|z| \geq r$.

