Section 5.56. Convergence of Series

Note. In this section we consider series of complex numbers. We define convergence of series, give a Test for Divergence, and show that absolute convergence of a series implies the convergence of the series.

Definition. An infinite series of complex numbers is an infinite sum of the form $\sum_{n=1}^{\infty} z_{n}=z_{1}+z_{2}+\cdots$. This series converges if the sequence of partial sums converges and the limit of the partial sums is the sum of the series. That is, $\sum_{n=1}^{\infty} z_{n}=S$ if $S=\lim _{N \rightarrow \infty} S_{N}$ where $S_{N}=\sum_{n=1}^{N} z_{n}=z_{1}+z_{2}+\cdots+z_{N}$. If $\sum_{n=1}^{\infty} z_{n}$ does not converge then it diverges.

Theorem 5.56.A. Suppose that $z_{n}=x_{n}+i y_{n}$ and $S=X+i Y$. Then $\sum_{n=1}^{\infty} z_{n}=S$ if and only if $\sum_{n=1}^{\infty} x_{n}=X$ and $\sum_{n=1}^{\infty} y_{n}=Y$.

Corollary 5.56.1. Test for Divergence

If a series of complex numbers converges, then the nth term converges to zero as n tends to infinity. That is, if z_{n} does not converge to 0 then $\sum_{n=1}^{\infty} z_{n}$ diverges.

Corollary 5.56.A. If the series $\sum_{n=1}^{\infty} z_{n}$ converges, then the sequence $\left\{z_{n}\right\}=$ z_{1}, z_{2}, \ldots is a bounded sequence. That is, there is positive $M \in \mathbb{R}$ such that $\left|z_{n}\right| \leq M$ for all $n \in \mathbb{N}$.

Note. A proof of Corollary 5.56.A is to be given in Exercise 5.56.9.

Definition. A series of complex numbers $\sum_{n=1}^{\infty} z_{n}$ is absolutely convergent if the series of real numbers $\sum_{n=1}^{\infty}\left|z_{n}\right|$ is convergent.

Note. As with series of real numbers, absolute convergence implies convergence as we now show.

Corollary 5.56.2. The absolute convergence of a series of complex numbers implies the convergence of that series.

Definition. Let $\sum_{n=1}^{\infty} z_{n}$ be a series with sum S and N th partial sum $S_{N}=$ $\sum_{n=1}^{N} z_{n}$. The remainder ρ_{N} after N terms Is $\rho_{N}=S-S_{N}$.

Note 5.56.A. Notice that series $\sum_{n=1}^{\infty} z_{n}$ converges to S if and only if sequence $\left\{\rho_{N}\right\}=\rho_{1}, \rho_{2}, \ldots$ converges to 0 .

Definition. A power series centered at z_{0} is a series of the form $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ where z is a variable and the a_{n} are coefficients. The sums, partial sum, and remainder of a power series are denoted $S(z), S_{N}(z)$, and $\rho_{N}(z)$, respectively.

Note. We explore power series in the next section. Notice that when $n=0$ and $z=z_{0}$, the first term in the power series seems to involve 0^{0}. However, this is simply a shortcoming of the power series notation. When $z=z_{0}$ we interpret the first term of the power series as a_{0}.

Example. The most important types of series are geometric series. This is because we can actually find the sum of a geometric series and much of the theory of power series are based on geometric series. Consider the geometric series $\sum_{n=1}^{\infty} z^{n}$ where $|z|<1$. We claim:

$$
\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z} \text { whenever }|z|<1
$$

To establish this, we notice from Exercise 1.8.9 (Exercise 1.9.9 in the 9th edition of the book) that

$$
1+z+z^{2}+z^{3}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z} \text { for } z \neq 1
$$

Notice that the N th partial sum for the geometric series is

$$
S_{N}(z)=\sum_{n=0}^{N-1} z^{n}=1+z+z^{2}+\cdots+z^{N-1}
$$

and so $S_{N}(z)=\frac{1-z^{N}}{1-z}$. With $S(z)=\frac{1}{1-z}$ we have the remainder $\rho_{N}(z)=$ $S(z)-S_{N}(z)=\frac{z^{N}}{1-z}$. So $\left|\rho_{N}(z)\right|=\frac{|z|^{N}}{|1-z|}$ and for $|z|<1$ we have

$$
\lim _{n \rightarrow \infty}\left|\rho_{N}(z)\right|=\lim _{n \rightarrow \infty} \frac{|z|^{N}}{|1-z|}=\frac{\lim _{n \rightarrow \infty}|z|^{N}}{\lim _{n \rightarrow \infty}|1-z|}=\frac{0}{|1-z|}=0
$$

So, for $|z|<1, \sum_{n=0}^{\infty} z^{n}=S(z)=\frac{1}{1-z}$.

