Section 5.59. Examples

Note. We now apply Taylor's Theorem (Theorem 5.57.A) to find series representations for several functions. In each example, we must be aware of parameter R_{0}.

Example 5.59.1. The function $f(z)=e^{z}$ is entire (since $f^{\prime}(z)=e^{z}$ for all $z \in \mathbb{C}$ by Exercise 2.22.A) so by Taylor's Theorem, $f(z)$ has a Maclaurin series $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n}$ valid for all $z \in \mathbb{C}$ (that is, $R_{0}=\infty$). Here, $f^{(n)}(z)=e^{z}$ for $n \in \mathbb{N} \cup\{0\}$ and so $f^{(n)}(0)=1$ for all n. So

$$
e^{z}=\sum_{n=0}^{\infty} \frac{1}{n!} z^{n} \text { for }|z|<\infty .
$$

We can find a series for the entire function $z^{2} e^{3 z}$ by replacing z with $3 z$ in the above series (and noticing that $|3 z|<\infty$ is equivalent to $|z|<\infty$) to get first that

$$
e^{3 z}=\sum_{n=0}^{\infty} \frac{1}{n!}(3 z)^{n}=\sum_{n=0}^{\infty} \frac{3^{n}}{n!} z^{n} \text { for }|z|<\infty .
$$

Next we multiply both sides by z^{2} and distribute on the right-hand side (this can by justified pointwise by Exercise 5.56.7) to get

$$
z^{2} e^{3 z}=z^{2} \sum_{n=0}^{\infty} \frac{3^{n}}{n!} z^{n}=\sum_{n=0}^{\infty} \frac{3^{n}}{n!} z^{n+2}=\sum_{n=2}^{\infty} \frac{3^{n-2}}{(n-2)!} z^{n} \text { for }|z|<\infty .
$$

We can similarly find a series for $e^{-z^{2}}$ as

$$
e^{-z^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} z^{2 n} \text { for }|z|<\infty
$$

With $z=x$ real, we have $e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n}$ for $|x|<\infty$, which is a useful series in statistics (it is related to the normal distribution and can be used to calculate the numerical values in a Z-table).

Example 5.59.2. In Section 3.34, "Trigonometric Functions," we defined $\sin z=$ $\frac{e^{i z}-e^{-i z}}{2 i}$. Since we now have a Maclaurin series for e^{z}, we can present such a series for $\sin z$:

$$
\begin{aligned}
\sin z & =\frac{1}{2 i}\left(\sum_{n=0}^{\infty} \frac{1}{n!}(i z)^{n}-\sum_{n=0}^{\infty} \frac{1}{n!}(-i z)^{n}\right) \text { for }|z|<\infty \\
& =\frac{1}{2 i}\left(\sum_{n=0}^{\infty} \frac{i^{n}}{n!} z^{n}-\sum_{n=0}^{\infty} \frac{(-1)^{n} i^{n}}{n!} z^{n}\right) \\
& =\frac{1}{2 i} \sum_{n=0}^{\infty} \frac{\left(1-(-1)^{n}\right) i^{n}}{n!} z^{n} \text { (this can be justified pointwise by Exercise 5.56.8) } \\
& =\frac{1}{2 i} \sum_{n=0, n}^{\infty} \frac{\left(1-(-1)^{n}\right) i^{n}}{n!} z^{n} \text { since }(1)-(-1)^{n}=0 \text { for } n \text { even } \\
& =\frac{1}{2 i} \sum_{n=0}^{\infty} \frac{\left(1-(-1)^{2 n+1}\right) i^{2 n+1}}{(2 n+1)!} z^{2 n+1} \text { replacing odd } n \text { above } \\
& =\frac{1}{2 i} \sum_{n=0}^{\infty} \frac{2(-1)^{n} i}{(2 n+1)!} z^{2 n+1} \text { since } 1-(-1)^{2 n+1}=2 \text { and } i^{2 n+1}=\left(i^{2}\right)^{n} i=(-1)^{n} i \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1} \text { for }|z|<\infty .
\end{aligned}
$$

So

$$
\sin z=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1} \text { for }|z|<\infty .
$$

In Theorem 5.65.2 we'll see that a power series can be differentiated term-by-term
so that

$$
\begin{aligned}
\cos z & =\frac{d}{d z}[\sin z]=\frac{d}{d z}\left[\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1}\right] \\
& =\sum_{n=0}^{\infty} \frac{d}{d z}\left[\frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1}\right] \text { by Theorem } 5.65 .2 \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}(2 n+1) z^{2 n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} z^{2 n} \text { for }|z|<\infty
\end{aligned}
$$

Example 5.59.4. Consider $f(z)=\frac{1}{1-z}=(1-z)^{-1}$. We have

$$
f^{(n)}(z)=n!(1-z)^{-(n+1)}=\frac{n!}{(1-z)^{n+1}} \text { and } f^{(n)}(0)=n!\text { for } n \in \mathbb{N} \cup\{0\}
$$

Now $f(z)$ is not defined at $z=1$ so that the Maclaurin series for $f(z)$ can have radius of convergence R_{0} at most 1 . The Maclaurin series is

$$
\frac{1}{1-z}=f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n}=\sum_{n=0}^{\infty} \frac{n!}{n!} z^{n}=\sum_{n=0}^{\infty} z^{n},
$$

and as we saw in an example from Section 5.56, "Convergence of Series," this series in fact converges for $|z|<R_{0}=1$. So we have

$$
\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n} \text { for }|z|<1
$$

If we replace z with $1-z$ then we get the Taylor series

$$
\frac{1}{z}=\sum_{n=0}^{\infty}(1-z)^{n}=\sum_{n=0}^{\infty}(-1)^{n}(z-1)^{n} \text { for }|z-1|<1
$$

Example 5.59.5. We seek a series representation of the rational function

$$
f(z)=\frac{1+2 z^{2}}{z^{3}+z^{5}}=\frac{1}{z^{3}} \frac{2\left(1+z^{2}\right)-1}{1+z^{2}}=\frac{1}{z^{3}}\left(2-\frac{1}{1+z^{2}}\right) .
$$

First, we use Example 5.59 .4 to get $\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}$ for $|z|<1$, and replacing z with $-z^{2}$ we see that

$$
\frac{1}{1+z^{2}}=\sum_{n=0}^{\infty}\left(-z^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} z^{2 n} \text { for }|z|<1
$$

and so (since $1 / z^{3}$ is not defined at $z=0$):

$$
\begin{aligned}
f(z) & =\frac{1}{z^{3}}\left(2-\frac{1}{1+z^{2}}\right)=\frac{1}{z^{3}}\left(2-\sum_{n=0}^{\infty}(-1)^{n} z^{2 n}\right) \text { for } 0<|z|<1 \\
& =\frac{2}{z^{3}}-\frac{1}{z^{3}} \sum_{n=0}^{\infty}(-1)^{n} z^{2 n} \\
& =\frac{2}{z^{3}}-\sum_{n=0}^{\infty}(-1)^{n} z^{2 n-3} \text { (this can be justified pointwise by Exercise 5.56.7) } \\
& =\frac{2}{z^{3}}-\frac{1}{z^{3}}+\frac{1}{z}-\sum_{n=2}^{\infty}(-1)^{n} z^{2 n-3} \\
& =\frac{1}{z^{3}}+\frac{1}{z}-\sum_{n=2}^{\infty}(-1)^{n} z^{2 n-3} \text { for } 0<|z|<1
\end{aligned}
$$

This is a series representation of f, but it is not a Taylor series since it involves some negative powers of z. We'll see in the next section that such a series is called a "Laurent series."

