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Section 5.59. Examples

Note. We now apply Taylor’s Theorem (Theorem 5.57.A) to find series represen-

tations for several functions. In each example, we must be aware of parameter

R0.

Example 5.59.1. The function f(z) = ez is entire (since f ′(z) = ez for all

z ∈ C by Exercise 2.22.A) so by Taylor’s Theorem, f(z) has a Maclaurin series

f(z) =
∞∑

n=0

f (n)(0)

n!
zn valid for all z ∈ C (that is, R0 = ∞). Here, f (n)(z) = ez for

n ∈ N ∪ {0} and so f (n)(0) = 1 for all n. So

ez =
∞∑

n=0

1

n!
zn for |z| < ∞.

We can find a series for the entire function z2e3z by replacing z with 3z in the above

series (and noticing that |3z| < ∞ is equivalent to |z| < ∞) to get first that

e3z =
∞∑

n=0

1

n!
(3z)n =

∞∑
n=0

3n

n!
zn for |z| < ∞.

Next we multiply both sides by z2 and distribute on the right-hand side (this can

by justified pointwise by Exercise 5.56.7) to get

z2e3z = z2
∞∑

n=0

3n

n!
zn =

∞∑
n=0

3n

n!
zn+2 =

∞∑
n=2

3n−2

(n− 2)!
zn for |z| < ∞.

We can similarly find a series for e−z2

as

e−z2

=
∞∑

n=0

(−1)n

n!
z2n for |z| < ∞.
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With z = x real, we have e−x2

=
∞∑

n=0

(−1)n

n!
x2n for |x| < ∞, which is a useful series

in statistics (it is related to the normal distribution and can be used to calculate

the numerical values in a Z-table).

Example 5.59.2. In Section 3.34, “Trigonometric Functions,” we defined sin z =
eiz − e−iz

2i
. Since we now have a Maclaurin series for ez, we can present such a series

for sin z:

sin z =
1

2i

( ∞∑
n=0

1

n!
(iz)n −

∞∑
n=0

1

n!
(−iz)n

)
for |z| < ∞

=
1

2i

( ∞∑
n=0

in

n!
zn −

∞∑
n=0

(−1)nin

n!
zn

)

=
1

2i

∞∑
n=0

(1− (−1)n)in

n!
zn (this can be justified pointwise by Exercise 5.56.8)

=
1

2i

∞∑
n=0,n odd

(1− (−1)n)in

n!
zn since (1)− (−1)n = 0 for n even

=
1

2i

∞∑
n=0

(1− (−1)2n+1)i2n+1

(2n + 1)!
z2n+1 replacing odd n above

with 2n + 1 here

=
1

2i

∞∑
n=0

2(−1)ni

(2n + 1)!
z2n+1 since 1− (−1)2n+1 = 2 and i2n+1 = (i2)ni = (−1)ni

=
∞∑

n=0

(−1)n

(2n + 1)!
z2n+1 for |z| < ∞.

So

sin z =
∞∑

n=0

(−1)n

(2n + 1)!
z2n+1for |z| < ∞.

In Theorem 5.65.2 we’ll see that a power series can be differentiated term-by-term
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so that

cos z =
d

dz
[sin z] =

d

dz

[ ∞∑
n=0

(−1)n

(2n + 1)!
z2n+1

]

=
∞∑

n=0

d

dz

[
(−1)n

(2n + 1)!
z2n+1

]
by Theorem 5.65.2

=
∞∑

n=0

(−1)n

(2n + 1)!
(2n + 1)z2n =

∞∑
n=0

(−1)n

(2n)!
z2n for |z| < ∞.

Example 5.59.4. Consider f(z) =
1

1− z
= (1− z)−1. We have

f (n)(z) = n!(1− z)−(n+1) =
n!

(1− z)n+1 and f (n)(0) = n! for n ∈ N ∪ {0}.

Now f(z) is not defined at z = 1 so that the Maclaurin series for f(z) can have

radius of convergence R0 at most 1. The Maclaurin series is

1

1− z
= f(z) =

∞∑
n=0

f (n)(0)

n!
zn =

∞∑
n=0

n!

n!
zn =

∞∑
n=0

zn,

and as we saw in an example from Section 5.56, “Convergence of Series,” this series

in fact converges for |z| < R0 = 1. So we have

1

1− z
=

∞∑
n=0

zn for |z| < 1.

If we replace z with 1− z then we get the Taylor series

1

z
=

∞∑
n=0

(1− z)n =
∞∑

n=0

(−1)n(z − 1)n for |z − 1| < 1.

Example 5.59.5. We seek a series representation of the rational function

f(z) =
1 + 2z2

z3 + z5 =
1

z3

2(1 + z2)− 1

1 + z2 =
1

z3

(
2− 1

1 + z2

)
.
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First, we use Example 5.59.4 to get
1

1− z
=

∞∑
n=0

zn for |z| < 1, and replacing z

with −z2 we see that

1

1 + z2 =
∞∑

n=0

(−z2)n =
∞∑

n=0

(−1)nz2n for |z| < 1

and so (since 1/z3 is not defined at z = 0):

f(z) =
1

z3

(
2− 1

1 + z2

)
=

1

z3

(
2−

∞∑
n=0

(−1)nz2n

)
for 0 < |z| < 1

=
2

z3 −
1

z3

∞∑
n=0

(−1)nz2n

=
2

z3 −
∞∑

n=0

(−1)nz2n−3 (this can be justified pointwise by Exercise 5.56.7)

=
2

z3 −
1

z3 +
1

z
−

∞∑
n=2

(−1)nz2n−3

=
1

z3 +
1

z
−

∞∑
n=2

(−1)nz2n−3 for 0 < |z| < 1.

This is a series representation of f , but it is not a Taylor series since it involves

some negative powers of z. We’ll see in the next section that such a series is called

a “Laurent series.”
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