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Section 5.61. Proof of Laurent’s Theorem

Note. We now give a moderately lengthy proof of Laurent’s Theorem (Theorem

5.60.1).

Proof of Laurent’s Theorem. Let f be analytic throughout an annular domain
Ry < |z — 29| < Ry, centered at zy, and let C' be any positively oriented simple
closed contour around z; and lying in that domain. Form a closed annular region
ry < |z| < 7o that is contained in the domain R; < |z| < Ry and whose interior

contains both the point z and the contour C' (see Figure 77).

FIGURE 77

Let Cy and Cs be the circles |z| = r; and |z| = 79, respectively, and give each a

positive orientation.

First we consider the case zyp = 0. Let z be a point in 1 < |z| < ry and let
be a positively oriented circle with center z and small enough to be contained in
the annular region r < |z| < ry (see Figure 77). By the Cauchy-Goursat Theorem

for analytic functions around oriented boundaries of multiply connected domains
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(Theorem 4.49.A; see Figure 60) we have
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as shown in the proof of Taylor’s Theorem (see Section 5.58) and interchanging s
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So from (x),
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Next, for the given z let |z| = r where 1 < r < 79, and let M denote the maximum
value of |f(s)| on C} and Cy (which exists since |f(s)| is continuous and C; U Cy is
compact). If s is any point on C5 then |s — z| > 7y — r, and if s is any point on C}

then |z — s| > r —r;. So
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by Theorem 4.43.A

Since r/ry < 1 and r1/r < 1, then as N — oo we have py(z) — 0 and ox(z) — 0.

Therefore,

fz) = Zanz +Z

n=0
where a,, and b,, are as required. Since z is an arbltrary point in 7 < [z| < 79, then

this holds for all such z and the theorem holds for z5 = 0. (Notice that we need to

replace s with z so that a,, and b, are in the form stated in the theorem.)

We now consider the case zg # 0. With f as required, define g(z) = f(z + 29).
Since f is analytic in Ry < |z—zp| < Ry then g(z) is analytic in Ry < |[(z+20)—20| =
|z| < Ry. With simple closed contour C' given as z = z(t) where a < t < b, let
v denote the simple closed contour z = z(t) — zp where a < t < b. Then ~ lies
in Ry < |z| < Ry. So by the first part of the proof, g(z) as a Laurent series

representation centered at zy = 0:

o (0. 9] bn
g(z) = Zanz” + Z o for Ry < |z| < Ry where
n=0 n=1
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Qp = /g(Z)dZ forn:())]-727"' andbn:2 /g(Z)dz forn:1727....
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That is, since f(z) = g(z — zp),

—~ by
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L /(f(z)dz forn=0,1,2,... and
C

27 z — zp)"t!
; :L/ g(z)dz: 1 /b f(z(2)2/(t) dt
" omi )=z 2T 210 J, (2(t) — zp) "+
1
= 27m'/c(zji(2)d—zn+1 forn=1,2,....
Therefore, the claim holds for general zj, as claimed. |
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