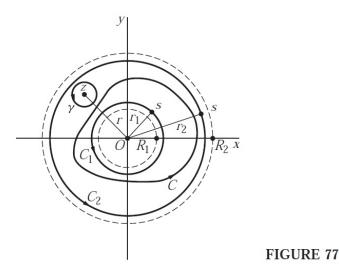
Section 5.61. Proof of Laurent's Theorem

Note. We now give a moderately lengthy proof of Laurent's Theorem (Theorem 5.60.1).

Proof of Laurent's Theorem. Let f be analytic throughout an annular domain $R_1 < |z - z_0| < R_2$, centered at z_0 , and let C be any positively oriented simple closed contour around z_0 and lying in that domain. Form a closed annular region $r_1 < |z| < r_2$ that is contained in the domain $R_1 < |z| < R_2$ and whose interior contains both the point z and the contour C (see Figure 77).



Let C_1 and C_2 be the circles $|z| = r_1$ and $|z| = r_2$, respectively, and give each a positive orientation.

First we consider the case $z_0 = 0$. Let z be a point in $r_1 < |z| < r_2$ and let γ be a positively oriented circle with center z and small enough to be contained in the annular region $r_1 < |z| < r_2$ (see Figure 77). By the Cauchy-Goursat Theorem for analytic functions around oriented boundaries of multiply connected domains

(Theorem 4.49.A; see Figure 60) we have

$$\int_{C_2} \frac{f(s) \, ds}{s-z} - \int_{C_1} \frac{f(s) \, ds}{s-z} - \int_{\gamma} \frac{f(s) \, ds}{s-z} = 0.$$

By the Cauchy Integral Formula (Theorem 4.50.A) we have $\int_{\gamma} \frac{f(s) ds}{s-z} = 2\pi i f(z)$, so that

$$f(z) = \frac{1}{2\pi i} \int_{C_1} \frac{f(s) \, ds}{z - s} + \frac{1}{2\pi i} \int_{C_2} \frac{f(s) \, ds}{z - s}.$$
 (*)

Now

$$\frac{1}{s-z} = \sum_{n=0}^{N-1} \frac{1}{s^{n+1}} z^n + z^N \frac{1}{(s-z)s^N} \qquad (**)$$

as shown in the proof of Taylor's Theorem (see Section 5.58) and interchanging s and z gives

$$\frac{1}{z-s} = \sum_{n=0}^{N-1} \frac{1}{s^{-n}} \frac{1}{z^{n+1}} + \frac{1}{z^N} \frac{s^N}{z-s} = \sum_{n=1}^N \frac{1}{s^{-n+1}} \frac{1}{z^n} + \frac{1}{z^N} \frac{s^N}{z-s}$$
(reindexing) (***)

From (**) we have

$$\frac{1}{2\pi i}\frac{f(s)}{s-z} = \frac{1}{2\pi i}\sum_{n=0}^{N-1}\frac{f(s)}{s^{n+1}}z^n + \frac{f(s)}{(s-z)s^N}z^N$$

and so

$$\frac{1}{2\pi i} \int_{C_2} \frac{f(z)}{s-z} \, ds = \frac{1}{2\pi i} \sum_{n=0}^{N-1} \left(\int_{C_2} \frac{f(s) \, ds}{s^{n+1}} \right) z^n + \frac{1}{2\pi i} \left(\int_{C_2} \frac{f(s) \, ds}{(s-z)s^N} \right) z^N$$

Similarly, from (* * *)

$$\frac{1}{2\pi i}\frac{f(s)}{z-s} = \frac{1}{2\pi i}\sum_{n=1}^{N}\frac{f(s)\,ds}{s^{-n+1}}\frac{1}{z^n} + \frac{1}{2\pi i}\frac{s^N f(s)}{z-s}\frac{1}{z^N}$$

and so

$$\frac{1}{2\pi i} \int_{C_1} \frac{f(s)\,ds}{z-s} = \frac{1}{2\pi i} \sum_{n=1}^N \left(\int_{C_1} \frac{f(s)\,ds}{s^{-n+1}} \right) \frac{1}{z^n} + \frac{1}{2\pi i} \left(\int_{C_1} \frac{s^N f(s)\,ds}{z-s} \right) \frac{1}{z^N}$$

So from (*),

$$f(z) = \frac{1}{2\pi i} \sum_{n=0}^{N-1} \left(\int_{C_2} \frac{f(s) \, ds}{s^{n+1}} \right) z^n + \frac{1}{2\pi i} \left(\int_{C_2} \frac{f(s) \, ds}{(s-z)s^N} \right) z^N$$
$$+ \frac{1}{2\pi i} \sum_{n=1}^N \left(\int_{C_1} \frac{f(s) \, ds}{s^{-n+1}} \right) \frac{1}{z^n} + \frac{1}{2\pi i} \left(\int_{C_1} \frac{s^N f(s) \, ds}{z-s} \right) \frac{1}{z^N}$$
$$= \sum_{n=0}^{N-1} a_n z^n + \rho_N(z) + \sum_{n=1}^N \frac{b_n}{z^n} + \sigma_N(z)$$

where

$$a_n = \frac{1}{2\pi i} \int_{C_2} \frac{f(s), ds}{s^{n+1}} \text{ for } n = 0, 1, \dots, N-1$$
$$b_n = \frac{1}{2\pi i} \int_{C_1} \frac{f(s) ds}{s^{-n+1}} \text{ for } n = 1, 2, \dots, N,$$
$$\rho_N(z) = \frac{z^N}{2\pi i} \int_{C_2} \frac{f(s) ds}{(s-z)s^N}, \text{ and } \sigma_N(z) = \frac{1}{2\pi i z^N} \int_{C_1} \frac{s^N f(s) ds}{z-s}$$

Next, for the given z let |z| = r where $r_1 < r < r_2$, and let M denote the maximum value of |f(s)| on C_1 and C_2 (which exists since |f(s)| is continuous and $C_1 \cup C_2$ is compact). If s is any point on C_2 then $|s - z| \ge r_2 - r$, and if s is any point on C_1 then $|z - s| \ge r - r_1$. So

$$\begin{aligned} |\rho_N(z)| &= \left| \frac{z^N}{2\pi i} \int_{C_2} \frac{f(s) \, ds}{(s-z) z^N} \right| \\ &\leq \frac{r^N}{2\pi} \frac{M 2\pi r_2}{(r_2 - r) r_2^N} \text{ by Theorem 4.43.A} \\ &= \frac{M r_2}{r_2 - r} \left(\frac{r}{r_2}\right)^N \end{aligned}$$

and

$$|\sigma_N(z)| = \left|\frac{1}{2\pi i z^N} \int_{C_1} \frac{s^N f(s) \, ds}{z-s}\right|$$

$$\leq \frac{1}{2\pi r^N} \frac{Mr_1^N 2\pi r_1}{r - r_1} \text{ by Theorem 4.43.A}$$
$$= \frac{Mr_1}{r - r_1} \left(\frac{r_1}{r}\right)^N.$$

Since $r/r_2 < 1$ and $r_1/r < 1$, then as $N \to \infty$ we have $\rho_N(z) \to 0$ and $\sigma_N(z) \to 0$. Therefore,

$$f(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} \frac{b_n}{z^n}$$

where a_n and b_n are as required. Since z is an arbitrary point in $r_1 < |z| < r_2$, then this holds for all such z and the theorem holds for $z_0 = 0$. (Notice that we need to replace s with z so that a_n and b_n are in the form stated in the theorem.)

We now consider the case $z_0 \neq 0$. With f as required, define $g(z) = f(z + z_0)$. Since f is analytic in $R_1 < |z-z_0| < R_2$ then g(z) is analytic in $R_1 < |(z+z_0)-z_0| = |z| < R_2$. With simple closed contour C given as z = z(t) where $a \leq t \leq b$, let γ denote the simple closed contour $z = z(t) - z_0$ where $a \leq t \leq b$. Then γ lies in $R_1 < |z| < R_2$. So by the first part of the proof, g(z) as a Laurent series representation centered at $z_0 = 0$:

$$g(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} \frac{b_n}{z^n}$$
 for $R_1 < |z| < R_2$ where

 $a_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{g(z) dz}{z^{n+1}}$ for $n = 0, 1, 2, \dots$ and $b_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{g(z) dz}{z^{-n+1}}$ for $n = 1, 2, \dots$

That is, since $f(z) = g(z - z_0)$,

$$f(z) = g(z - z_0) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} \text{ for } R_1 < |z - z_0| < R_2 \text{ where}$$
$$a_n = \frac{1}{2\pi i} \int_{z(t)-z_0} \frac{g(z) \, dz}{z^{n+1}} = \frac{1}{2\pi i} \int_a^b \frac{f(z(t))z'(t) \, dt}{(z(t) - z_0)^{n+1}}$$

$$= \frac{1}{2\pi i} \int_C \frac{f(z) dz}{(z - z_0)^{n+1}} \text{ for } n = 0, 1, 2, \dots \text{ and}$$
$$b_n = \frac{1}{2\pi i} \int_{z(t)-z_0} \frac{g(z) dz}{z^{-n+1}} = \frac{1}{2\pi i} \int_a^b \frac{f(z(t))z'(t) dt}{(z(t) - z_0)^{-n+1}}$$
$$= \frac{1}{2\pi i} \int_C \frac{f(z) dz}{(z - z_0)^{-n+1}} \text{ for } n = 1, 2, \dots$$

Therefore, the claim holds for general z_0 , as claimed.

Revised: 2/10/2020