Section 5.61. Proof of Laurent's Theorem

Note. We now give a moderately lengthy proof of Laurent's Theorem (Theorem 5.60.1).

Proof of Laurent's Theorem. Let f be analytic throughout an annular domain $R_{1}<\left|z-z_{0}\right|<R_{2}$, centered at z_{0}, and let C be any positively oriented simple closed contour around z_{0} and lying in that domain. Form a closed annular region $r_{1}<|z|<r_{2}$ that is contained in the domain $R_{1}<|z|<R_{2}$ and whose interior contains both the point z and the contour C (see Figure 77).

FIGURE 77

Let C_{1} and C_{2} be the circles $|z|=r_{1}$ and $|z|=r_{2}$, respectively, and give each a positive orientation.

First we consider the case $z_{0}=0$. Let z be a point in $r_{1}<|z|<r_{2}$ and let γ be a positively oriented circle with center z and small enough to be contained in the annular region $r_{1}<|z|<r_{2}$ (see Figure 77). By the Cauchy-Goursat Theorem for analytic functions around oriented boundaries of multiply connected domains
(Theorem 4.49.A; see Figure 60) we have

$$
\int_{C_{2}} \frac{f(s) d s}{s-z}-\int_{C_{1}} \frac{f(s) d s}{s-z}-\int_{\gamma} \frac{f(s) d s}{s-z}=0
$$

By the Cauchy Integral Formula (Theorem 4.50.A) we have $\int_{\gamma} \frac{f(s) d s}{s-z}=2 \pi i f(z)$, so that

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{C_{1}} \frac{f(s) d s}{z-s}+\frac{1}{2 \pi i} \int_{C_{2}} \frac{f(s) d s}{z-s} . \tag{*}
\end{equation*}
$$

Now

$$
\begin{equation*}
\frac{1}{s-z}=\sum_{n=0}^{N-1} \frac{1}{s^{n+1}} z^{n}+z^{N} \frac{1}{(s-z) s^{N}} \tag{**}
\end{equation*}
$$

as shown in the proof of Taylor's Theorem (see Section 5.58) and interchanging s and z gives

$$
\frac{1}{z-s}=\sum_{n=0}^{N-1} \frac{1}{s^{-n}} \frac{1}{z^{n+1}}+\frac{1}{z^{N}} \frac{s^{N}}{z-s}=\sum_{n=1}^{N} \frac{1}{s^{-n+1}} \frac{1}{z^{n}}+\frac{1}{z^{N}} \frac{s^{N}}{z-s}(\text { reindexing }) \quad(* * *)
$$

From ($* *$) we have

$$
\frac{1}{2 \pi i} \frac{f(s)}{s-z}=\frac{1}{2 \pi i} \sum_{n=0}^{N-1} \frac{f(s)}{s^{n+1}} z^{n}+\frac{f(s)}{(s-z) s^{N}} z^{N}
$$

and so

$$
\frac{1}{2 \pi i} \int_{C_{2}} \frac{f(z)}{s-z} d s=\frac{1}{2 \pi i} \sum_{n=0}^{N-1}\left(\int_{C_{2}} \frac{f(s) d s}{s^{n+1}}\right) z^{n}+\frac{1}{2 \pi i}\left(\int_{C_{2}} \frac{f(s) d s}{(s-z) s^{N}}\right) z^{N}
$$

Similarly, from $(* * *)$

$$
\frac{1}{2 \pi i} \frac{f(s)}{z-s}=\frac{1}{2 \pi i} \sum_{n=1}^{N} \frac{f(s) d s}{s^{-n+1}} \frac{1}{z^{n}}+\frac{1}{2 \pi i} \frac{s^{N} f(s)}{z-s} \frac{1}{z^{N}}
$$

and so

$$
\frac{1}{2 \pi i} \int_{C_{1}} \frac{f(s) d s}{z-s}=\frac{1}{2 \pi i} \sum_{n=1}^{N}\left(\int_{C_{1}} \frac{f(s) d s}{s^{-n+1}}\right) \frac{1}{z^{n}}+\frac{1}{2 \pi i}\left(\int_{C_{1}} \frac{s^{N} f(s) d s}{z-s}\right) \frac{1}{z^{N}}
$$

So from (*),

$$
\begin{gathered}
f(z)=\frac{1}{2 \pi i} \sum_{n=0}^{N-1}\left(\int_{C_{2}} \frac{f(s) d s}{s^{n+1}}\right) z^{n}+\frac{1}{2 \pi i}\left(\int_{C_{2}} \frac{f(s) d s}{(s-z) s^{N}}\right) z^{N} \\
+\frac{1}{2 \pi i} \sum_{n=1}^{N}\left(\int_{C_{1}} \frac{f(s) d s}{s^{-n+1}}\right) \frac{1}{z^{n}}+\frac{1}{2 \pi i}\left(\int_{C_{1}} \frac{s^{N} f(s) d s}{z-s}\right) \frac{1}{z^{N}} \\
=\sum_{n=0}^{N-1} a_{n} z^{n}+\rho_{N}(z)+\sum_{n=1}^{N} \frac{b_{n}}{z^{n}}+\sigma_{N}(z)
\end{gathered}
$$

where

$$
\begin{gathered}
a_{n}=\frac{1}{2 \pi i} \int_{C_{2}} \frac{f(s), d s}{s^{n+1}} \text { for } n=0,1, \ldots, N-1 \\
b_{n}=\frac{1}{2 \pi i} \int_{C_{1}} \frac{f(s) d s}{s^{-n+1}} \text { for } n=1,2, \ldots, N, \\
\rho_{N}(z)=\frac{z^{N}}{2 \pi i} \int_{C_{2}} \frac{f(s) d s}{(s-z) s^{N}}, \text { and } \sigma_{N}(z)=\frac{1}{2 \pi i z^{N}} \int_{C_{1}} \frac{s^{N} f(s) d s}{z-s} .
\end{gathered}
$$

Next, for the given z let $|z|=r$ where $r_{1}<r<r_{2}$, and let M denote the maximum value of $|f(s)|$ on C_{1} and C_{2} (which exists since $|f(s)|$ is continuous and $C_{1} \cup C_{2}$ is compact). If s is any point on C_{2} then $|s-z| \geq r_{2}-r$, and if s is any point on C_{1} then $|z-s| \geq r-r_{1}$. So

$$
\begin{aligned}
\left|\rho_{N}(z)\right| & =\left|\frac{z^{N}}{2 \pi i} \int_{C_{2}} \frac{f(s) d s}{(s-z) z^{N}}\right| \\
& \leq \frac{r^{N}}{2 \pi} \frac{M 2 \pi r_{2}}{\left(r_{2}-r\right) r_{2}^{N}} \text { by Theorem 4.43.A } \\
& =\frac{M r_{2}}{r_{2}-r}\left(\frac{r}{r_{2}}\right)^{N}
\end{aligned}
$$

and

$$
\left|\sigma_{N}(z)\right|=\left|\frac{1}{2 \pi i z^{N}} \int_{C_{1}} \frac{s^{N} f(s) d s}{z-s}\right|
$$

$$
\begin{aligned}
& \leq \frac{1}{2 \pi r^{N}} \frac{M r_{1}^{N} 2 \pi r_{1}}{r-r_{1}} \text { by Theorem 4.43.A } \\
& =\frac{M r_{1}}{r-r_{1}}\left(\frac{r_{1}}{r}\right)^{N} .
\end{aligned}
$$

Since $r / r_{2}<1$ and $r_{1} / r<1$, then as $N \rightarrow \infty$ we have $\rho_{N}(z) \rightarrow 0$ and $\sigma_{N}(z) \rightarrow 0$. Therefore,

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}}
$$

where a_{n} and b_{n} are as required. Since z is an arbitrary point in $r_{1}<|z|<r_{2}$, then this holds for all such z and the theorem holds for $z_{0}=0$. (Notice that we need to replace s with z so that a_{n} and b_{n} are in the form stated in the theorem.)

We now consider the case $z_{0} \neq 0$. With f as required, define $g(z)=f\left(z+z_{0}\right)$. Since f is analytic in $R_{1}<\left|z-z_{0}\right|<R_{2}$ then $g(z)$ is analytic in $R_{1}<\left|\left(z+z_{0}\right)-z_{0}\right|=$ $|z|<R_{2}$. With simple closed contour C given as $z=z(t)$ where $a \leq t \leq b$, let γ denote the simple closed contour $z=z(t)-z_{0}$ where $a \leq t \leq b$. Then γ lies in $R_{1}<|z|<R_{2}$. So by the first part of the proof, $g(z)$ as a Laurent series representation centered at $z_{0}=0$:

$$
\begin{gathered}
g(z)=\sum_{n=0}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}} \text { for } R_{1}<|z|<R_{2} \text { where } \\
a_{n}=\frac{1}{2 \pi i} \int_{\Gamma} \frac{g(z) d z}{z^{n+1}} \text { for } n=0,1,2, \ldots \text { and } b_{n}=\frac{1}{2 \pi i} \int_{\Gamma} \frac{g(z) d z}{z^{-n+1}} \text { for } n=1,2, \ldots
\end{gathered}
$$

That is, since $f(z)=g\left(z-z_{0}\right)$,

$$
\begin{aligned}
f(z)=g\left(z-z_{0}\right) & =\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}} \text { for } R_{1}<\left|z-z_{0}\right|<R_{2} \text { where } \\
a_{n} & =\frac{1}{2 \pi i} \int_{z(t)-z_{0}} \frac{g(z) d z}{z^{n+1}}=\frac{1}{2 \pi i} \int_{a}^{b} \frac{f(z(t)) z^{\prime}(t) d t}{\left(z(t)-z_{0}\right)^{n+1}}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}} \text { for } n=0,1,2, \ldots \text { and } \\
b_{n}= & \frac{1}{2 \pi i} \int_{z(t)-z_{0}} \frac{g(z) d z}{z^{-n+1}}=\frac{1}{2 \pi i} \int_{a}^{b} \frac{f(z(t)) z^{\prime}(t) d t}{\left(z(t)-z_{0}\right)^{-n+1}} \\
& =\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{-n+1}} \text { for } n=1,2, \ldots
\end{aligned}
$$

Therefore, the claim holds for general z_{0}, as claimed.

