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Section 5.61. Proof of Laurent’s Theorem

Note. We now give a moderately lengthy proof of Laurent’s Theorem (Theorem

5.60.1).

Proof of Laurent’s Theorem. Let f be analytic throughout an annular domain

R1 < |z − z0| < R2, centered at z0, and let C be any positively oriented simple

closed contour around z0 and lying in that domain. Form a closed annular region

r1 < |z| < r2 that is contained in the domain R1 < |z| < R2 and whose interior

contains both the point z and the contour C (see Figure 77).

Let C1 and C2 be the circles |z| = r1 and |z| = r2, respectively, and give each a

positive orientation.

First we consider the case z0 = 0. Let z be a point in r1 < |z| < r2 and let γ

be a positively oriented circle with center z and small enough to be contained in

the annular region r1 < |z| < r2 (see Figure 77). By the Cauchy-Goursat Theorem

for analytic functions around oriented boundaries of multiply connected domains
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(Theorem 4.49.A; see Figure 60) we have∫
C2

f(s) ds

s− z
−

∫
C1

f(s) ds

s− z
−

∫
γ

f(s) ds

s− z
= 0.

By the Cauchy Integral Formula (Theorem 4.50.A) we have

∫
γ

f(s) ds

s− z
= 2πif(z),

so that

f(z) =
1

2πi

∫
C1

f(s) ds

z − s
+

1

2πi

∫
C2

f(s) ds

z − s
. (∗)

Now
1

s− z
=

N−1∑
n=0

1

sn+1z
n + zN 1

(s− z)sN
(∗∗)

as shown in the proof of Taylor’s Theorem (see Section 5.58) and interchanging s

and z gives

1

z − s
=

N−1∑
n=0

1

s−n

1

zn+1 +
1

zN

sN

z − s
=

N∑
n=1

1

s−n+1

1

zn
+

1

zN

sN

z − s
(reindexing) (∗ ∗ ∗)

From (∗∗) we have

1

2πi

f(s)

s− z
=

1

2πi

N−1∑
n=0

f(s)

sn+1z
n +

f(s)

(s− z)sN
zN

and so

1

2πi

∫
C2

f(z)

s− z
ds =

1

2πi

N−1∑
n=0

(∫
C2

f(s) ds

sn+1

)
zn +

1

2πi

(∫
C2

f(s) ds

(s− z)sN

)
zN .

Similarly, from (∗ ∗ ∗)

1

2πi

f(s)

z − s
=

1

2πi

N∑
n=1

f(s) ds

s−n+1

1

zn
+

1

2πi

sNf(s)

z − s

1

zN

and so

1

2πi

∫
C1

f(s) ds

z − s
=

1

2πi

N∑
n=1

(∫
C1

f(s) ds

s−n+1

)
1

zn
+

1

2πi

(∫
C1

sNf(s) ds

z − s

)
1

zN
.
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So from (∗),

f(z) =
1

2πi

N−1∑
n=0

(∫
C2

f(s) ds

sn+1

)
zn +

1

2πi

(∫
C2

f(s) ds

(s− z)sN

)
zN

+
1

2πi

N∑
n=1

(∫
C1

f(s) ds

s−n+1

)
1

zn
+

1

2πi

(∫
C1

sNf(s) ds

z − s

)
1

zN

=
N−1∑
n=0

anz
n + ρN(z) +

N∑
n=1

bn

zn
+ σN(z)

where

an =
1

2πi

∫
C2

f(s), ds

sn+1 for n = 0, 1, . . . , N − 1

bn =
1

2πi

∫
C1

f(s) ds

s−n+1 for n = 1, 2, . . . , N,

ρN(z) =
zN

2πi

∫
C2

f(s) ds

(s− z)sN
, and σN(z) =

1

2πizN

∫
C1

sNf(s) ds

z − s
.

Next, for the given z let |z| = r where r1 < r < r2, and let M denote the maximum

value of |f(s)| on C1 and C2 (which exists since |f(s)| is continuous and C1 ∪C2 is

compact). If s is any point on C2 then |s− z| ≥ r2 − r, and if s is any point on C1

then |z − s| ≥ r − r1. So

|ρN(z)| =

∣∣∣∣ zN

2πi

∫
C2

f(s) ds

(s− z)zN

∣∣∣∣
≤ rN

2π

M2πr2

(r2 − r)rN
2

by Theorem 4.43.A

=
Mr2

r2 − r

(
r

r2

)N

and

|σN(z)| =

∣∣∣∣ 1

2πizN

∫
C1

sNf(s) ds

z − s

∣∣∣∣
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≤ 1

2πrN

MrN
1 2πr1

r − r1
by Theorem 4.43.A

=
Mr1

r − r1

(r1

r

)N

.

Since r/r2 < 1 and r1/r < 1, then as N →∞ we have ρN(z) → 0 and σN(z) → 0.

Therefore,

f(z) =
∞∑

n=0

anz
n +

∞∑
n=1

bn

zn

where an and bn are as required. Since z is an arbitrary point in r1 < |z| < r2, then

this holds for all such z and the theorem holds for z0 = 0. (Notice that we need to

replace s with z so that an and bn are in the form stated in the theorem.)

We now consider the case z0 6= 0. With f as required, define g(z) = f(z + z0).

Since f is analytic in R1 < |z−z0| < R2 then g(z) is analytic in R1 < |(z+z0)−z0| =

|z| < R2. With simple closed contour C given as z = z(t) where a ≤ t ≤ b, let

γ denote the simple closed contour z = z(t) − z0 where a ≤ t ≤ b. Then γ lies

in R1 < |z| < R2. So by the first part of the proof, g(z) as a Laurent series

representation centered at z0 = 0:

g(z) =
∞∑

n=0

anz
n +

∞∑
n=1

bn

zn
for R1 < |z| < R2 where

an =
1

2πi

∫
Γ

g(z) dz

zn+1 for n = 0, 1, 2, . . . and bn =
1

2πi

∫
Γ

g(z) dz

z−n+1 for n = 1, 2, . . . .

That is, since f(z) = g(z − z0),

f(z) = g(z − z0) =
∞∑

n=0

an(z − z0)
n +

∞∑
n=1

bn

(z − z0)n
for R1 < |z − z0| < R2 where

an =
1

2πi

∫
z(t)−z0

g(z) dz

zn+1 =
1

2πi

∫ b

a

f(z(t))z′(t) dt

(z(t)− z0)n+1
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=
1

2πi

∫
C

f(z) dz

(z − z0)n+1 for n = 0, 1, 2, . . . and

bn =
1

2πi

∫
z(t)−z0

g(z) dz

z−n+1 =
1

2πi

∫ b

a

f(z(t))z′(t) dt

(z(t)− z0)−n+1

=
1

2πi

∫
C

f(z) dz

(z − z0)−n+1 for n = 1, 2, . . . .

Therefore, the claim holds for general z0, as claimed.
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