Section 5.62. Examples

Note. We now find Laurent series for several functions. In each example, we are careful to give a set on which the series is valid. However, we do not compute coefficients using integrals as stated in Laurent's Theorem (Theorem 5.60.1).

Example 5.62.1. Since $e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$ for $|z|<\infty$, then replacing z with $1 / z$ we have

$$
e^{1 / z}=\sum_{n=0}^{\infty} \frac{(1 / z)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{1}{n!z^{n}} \text { for } 0<|z|<\infty .
$$

Based on Laurent's Theorem (Theorem 5.60.1), we see that $b_{1}=\frac{1}{2 \pi i} \int_{C} e^{1 / z} d z$ where C is any positively oreinted simple closed contour around $z_{0}=0$. Since $b_{1}=1$ here, then $\int_{C} e^{1 / z} d z=2 \pi i$. So if we have a Laurent series for $f(z)$, then we can use it and Laurent's Theorem to evaluate certain integrals. This is explained in more detail in Chapters 6 and 7 ("Residues and Poles" and "Applications of Residues," respectively).

Example 5.62.2. The function $f(z)=\frac{1}{(z-i)^{2}}$ is already in the form of a Laurent series where $z_{0}=i$. With

$$
\frac{1}{(z-i)^{2}}=\sum_{n=-\infty}^{\infty} c_{n}(z-i)^{n} \text { where } 0<|z-i|<\infty
$$

we have $c_{-2}=1$ and $c_{n}=0$ for $n \in \mathbb{Z} \backslash\{-2\}$. By Laurent's Theorem (see Note 5.60.A)

$$
c_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}} \text { for } n \in \mathbb{Z}
$$

and C any positively oriented simple closed contour around $z_{0}=i$ lying in that domain $0<|z-i|<\infty$. Therefore

$$
\int_{C} \frac{d z}{(z-i)^{n+3}}=\left\{\begin{array}{cl}
0 & \text { for } n \in \mathbb{Z} \backslash\{-2\} \\
2 \pi i & \text { for } n=-2
\end{array}\right.
$$

Examples 5.62.3 and 5.62.4. Consider the function

$$
f(z)=\frac{-1}{(z-1)(z-2)}=\frac{1}{z-1}-\frac{1}{z-2} .
$$

This has two singular points, $z=1$ and $z=2$. So $f(z)$ is analytic in $\mathbb{C} \backslash\{1,2\}$. In particular, f is analytic in the domains $|z|<1,1<|z|<2$, and $2<|z|<\infty$, which we denote D_{1}, D_{2}, and D_{3} respectively (see Figure 78).

Figure 78
As seen above, we have $\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}$ for $|z|<1$. Replacing z with $z / 2$ gives

$$
\frac{1}{1-z / 2}=\sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n}} \text { for }|z|<2 .
$$

So in domain D_{1} we have

$$
f(z)=\frac{1}{z-1}-\frac{1}{z-2}=-\frac{1}{1-z}+\frac{1}{2-z}=-\frac{1}{1-z}+\frac{1}{2} \frac{1}{1-z / 2}
$$

$$
=-\sum_{n=0}^{\infty} z^{n}+\frac{1}{2} \sum_{n=0}^{\infty} \frac{z^{n}}{2^{n}}=\sum_{n=0}^{\infty}\left(\frac{1}{2^{n+1}}-1\right) z^{n} \text { for }|z|<1 .
$$

So $f(z)$ actually has a Taylor series representation on D_{1}.
Next, we look for a series representation on D_{2}. We need to modify our version of f so that we can get a series representation valid outside of $|z| \leq 1$. So we write

$$
f(z)=\frac{1}{z-1}-\frac{1}{z-2}=\frac{1}{z} \frac{1}{1-1 / z}+\frac{1}{2} \frac{1}{1-z / 2} .
$$

Replacing z with $1 / z$ in the series for $\frac{1}{1-z}$ we get

$$
\frac{1}{1-1 / z}=\sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n} \text { for }|1 / z|<1 \text { (or equivalently }|z|>1 \text {). }
$$

So in domain D_{2} we have

$$
\begin{aligned}
f(z) & =\frac{1}{z} \frac{1}{1-1 / z}+\frac{1}{2} \frac{1}{1-z / 2} \\
& =\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n}+\frac{1}{2} \sum_{n=0}^{\infty} \frac{z^{n}}{2^{n}} \text { for } 1<|z|<2 \\
& =\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}+\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}} \text { for } 1<|z|<2 .
\end{aligned}
$$

Finally, we look for a series representation on D_{3}. This time we write

$$
f(z)=\frac{1}{z-1}-\frac{1}{z-2}=\frac{1}{z} \frac{1}{1-1 / z}-\frac{1}{z} \frac{1}{1-2 / z} .
$$

From above,

$$
\frac{1}{z} \frac{1}{1-1 / z}=\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{z^{n+1}} \text { for }|z|>1
$$

Similarly, replacing z with $2 / z$ in the series for $\frac{1}{1-z}$ we get

$$
\frac{1}{1-2 / z}=\sum_{n=0}^{\infty}\left(\frac{2}{z}\right)^{n}=\sum_{n=0}^{\infty} \frac{2^{n}}{z^{n}} \text { for }\left|\frac{2}{z}\right|<1 \text { (or equivalently }|z|>2 \text {). }
$$

So in domain D_{3} we have

$$
f(z)=\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}-\frac{1}{z} \sum_{n=0}^{\infty} \frac{2^{n}}{z^{n}}=\sum_{n=0}^{\infty} \frac{1-2^{n}}{z^{n+1}}=\sum_{n=1}^{\infty} \frac{1-2^{n-1}}{z^{n}} \text { for }|z|>2 .
$$

So in these examples we see that the same function may have different Laurent series centered at z_{0} which are valid in different regions.

