Section 5.65. Integration and Differentiation of Power Series

Note. If a function can be written as a power series then we can numerically approximate function values. In this section we show that integration and differentiation can be performed term-by-term. Since powers of $\left(z-z_{0}\right)^{n}$ are easy to integrate then it is easy to integrate power series (and as you see in Calculus 2, without using series many functions are hard to integrate, such as $\sin x^{2}$ and $e^{-x^{2}}$).

Theorem 5.65.1. Let C denote any contour interior to the circle of convergence of the power series $S(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and let $g(z)$ be any function that is continuous on C. The series formed by multiplying each term of the power series by $g(z)$ can be integrated term-by-term over C; that is

$$
\int_{C} g(z) S(z) d z=\int_{C} g(z) \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=0}^{\infty} a_{n} \int_{C} g(z)\left(z-z_{0}\right)^{n} d z
$$

Note 5.65.A. With $g(z)=1$, Theorem 5.65.1 implies that, for C in the circle of convergence of the power series,

$$
\int_{C} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=0}^{\infty} a_{n} \int_{C}\left(z-z_{0}\right)^{n} d z
$$

Corollary 5.65.1. The power series $S(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is analytic at each point z interior to the circle of convergence of the series.

Note 5.65.B. By Taylor's Theorem (Theorem 5.57.A) we know that an analytic function has a power series representation. By Corollary 5.65.1, we see that a power series represents an analytic function. Therefore, a function is analytic on $\left|z-z_{0}\right|<R$ (where R could be ∞) if and only if it has a power series representation on $\left|z-z_{0}\right|<R$.

Example 5.65.1. Define $f(z)=\left\{\begin{array}{cl}\left(e^{z}-1\right) / z & \text { when } z \neq 0 \\ 1 & \text { when } z=0 .\end{array}\right.$ The Maclaurin series $e^{z}-1=\sum_{n=1}^{\infty} \frac{z^{n}}{n!}$ is valid for all $z \in \mathbb{C}$ and so

$$
\frac{e^{z}-1}{z}=\frac{1}{z} \sum_{n=1}^{\infty} \frac{z^{n}}{n!}=\sum_{n=1}^{\infty} \frac{z^{n-1}}{n!}=1+\frac{z}{2!}+\frac{z^{2}}{3!}+\frac{z^{3}}{4!}+\cdots \text { for } z \neq 0
$$

and this Maclaurin series represents $f(z)$ for $z \neq 0$. But the series has the value 1 at $z=0$ and so we can state that $f(z)=\sum_{n=1}^{\infty} z^{n} / n!$ for all $z \in \mathbb{C}$. So by Corollary 5.65.1, $f(z)$ is analytic in the entire complex plane. In particular,

$$
\begin{aligned}
\lim _{z \rightarrow 0} \frac{e^{z}-1}{z}= & \lim _{z \rightarrow 0} f(z) \text { since " } \lim _{z \rightarrow 0} \text { " implies that } z \neq 0 \\
& \text { and } \frac{e^{z}-1}{z}=f(z) \text { for } z \neq 0 \\
= & f(0)=1 .
\end{aligned}
$$

Theorem 5.65.2. The power series $S(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ can be differentiated term-by-term in its circle of convergence. That is, at each point z interior to the circle of convergence of that series, we have $S^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n}\left(z-z_{0}\right)^{n-1}$.

Example 5.65.2. In example 5.59 .4 we saw that $\frac{1}{z}=\sum_{n=0}^{\infty}(-1)^{n}(z-1)^{n}$ for $|z-1|<$ 1. So by Theorem 5.65.2, we can differentiate to get $\frac{-1}{z^{2}}=\sum_{n=1}^{\infty}(-1)^{n} n(z-1)^{n-1}$ for $|z-1|<1$, or

$$
\frac{1}{z^{2}}=\sum_{n=0}^{\infty}(-1)^{n+1}(n+1)(z+1)^{n} \text { for }|z-1|<1
$$

