Section 6.69. Residues

Note. In this section we use a Laurent series of a function about an isolated singularity to define the residue of the function at the singularity. The residue is then used to evaluate integrals of the function.

Note. If f has an isolated singularity at z_{0} then f is analytic on $0<\left|z-z_{0}\right|<R_{2}$ for some $R_{2}>0$ and so by Theorem 60.1, "Laurent's Theorem," f has a Laurent series for $0<\left|z-z_{0}\right|<R_{2}$ of

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}} \text { where } b_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{-n+1}}
$$

for $b \in \mathbb{N}$ and C is a positively oriented simple closed contour around z_{0} in $0<$ $\left|z-z_{0}\right|<R_{2}$. When $n=1$ this gives

$$
b_{1}=\frac{1}{2 \pi i} \int_{C} f(z) d z \text { or } \int_{C} f(z) d z=2 \pi i b_{1} .
$$

We'll see that b_{1} plays an important role in the evaluation of integrals of f.

Definition. If function f has an isolated singularity at $z=z_{0}$ then the coefficient b_{1} in the Laurent series

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}
$$

is the residue of f at z_{0}, denoted $b_{1}=\operatorname{Res}_{z=z_{0}} f(z)$.

Note 69.A. We have from above that $\int_{C} f(z) d z=2 \pi i b_{1}=2 \pi i \operatorname{Res}_{z=z_{0}} f(z)$ where C is a positively oriented closed contour around z_{0} as described above.

Example 2. Consider $f(z)=\exp \left(1 / z^{2}\right)$ and let C be the positively oriented unit circle $|z|=1$. We now evaluate $\int_{C} f(z) d z$ using residues. Now f is analytic except at $z_{0}=0$, so f has an isolated singularity at $z_{0}=0$ and hence f has a Laurent series centered at $z_{0}=0$ by Theorem 60.1 "Laurents Theorem." We can find the Laurent series by replacing z with $1 / z^{2}$ in the series for $\exp (z)$; that Laurent series will therefore be valid for $0<|z|<\infty$. We have

$$
\exp \left(\frac{1}{z^{2}}\right)=\sum_{n=0}^{\infty} \frac{\left(1 / z^{2}\right)^{n}}{n!}=1+\frac{0}{z}+\frac{1}{z!z^{2}}+\frac{0}{z^{3}}+\frac{1}{2!z^{4}}+\cdots
$$

and so $\operatorname{Res}_{z=0} f(z)=b_{1}=0$. Therefore,

$$
\int_{C} f(z) d z=2 \pi i \operatorname{Res}_{z=0} f(z)=2 \pi i b_{1}=0
$$

Brown and Churchill point out that we know that if f is analytic in and on C then $\int_{C} f(z) d z=0$, but this example shows that the converse does not hold since $\int_{C} \exp \left(1 / z^{2}\right) d z=0$, but $\exp \left(1 / z^{2}\right)$ is not analytic inside C.

Example 3. We can use residues and geometric series to evaluate integrals of certain rational functions. Consider $\int_{C} \frac{d z}{z(z-1)^{4}}$ where C is the positively oriented circle $|z-2|=1$. With $f(z)=\frac{1}{z(z-2)^{4}}, f$ is analytic on $0<|z-2|<2$ and so f has a Laurent series about $z_{0}=2$ by Theorem 60.1, "Laurent's Theorem." Therefore, by Note 69.A, $\int_{C} \frac{d z}{z(z-2)^{4}}=2 \pi i \operatorname{Res}_{z=2} f(z)$. Since

$$
\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n} \text { for }|z|<1
$$

(the sum of a geometric series), then

$$
\frac{1}{z(z-2)^{4}}=\frac{1}{(z-2)^{4}} \frac{1}{2+(z-2)}=\frac{1}{2} \frac{1}{(z-2)^{4}} \frac{1}{1-\left(-\frac{z-2}{2}\right)}
$$

$$
=\frac{1}{2} \frac{1}{(z-2)^{4}} \sum_{n=0}^{\infty}\left(\frac{-(z-2)}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}}(z-2)^{n-4} .
$$

So with $n=3$, we have the term $\frac{-1}{16}(z-2)^{-1}$ and so $\operatorname{Res}_{z=2} f(z)=\frac{-1}{16}$. So

$$
\int_{C} \frac{d z}{z(z-2)^{4}}=2 \pi i\left(\frac{-1}{16}\right)=\frac{-\pi i}{8} .
$$

