Section 6.71. Residues at Infinity

Note. We introduce a new kind of residue that will allow us to evaluate certain integrals from a single residue, instead of from several residues as we did in the previous section.

Definition. If for function f there is $R_{1}>0$ such that f is analytic for $R_{1}<|z|<$ ∞ then f has an isolated singularity point at $z_{0}=\infty$.

Definition. Let f have an isolated singularity point at $z_{0}=\infty$, so that f is analytic for $R_{1}<|z|<\infty$ for some $R_{1}>0$. Let $R_{0}>R_{1}$ and let C_{0} denote the circle $|z|=R_{0}$ with a negative orientation. The residue of f at infinity is

$$
\operatorname{Res}_{z=\infty} f(z)=\frac{1}{2 \pi i} \int_{C_{0}} f(z) d z
$$

Note. The residue of f at infinity is defined in terms of parameter R_{0} which could be any positive number "sufficiently large." However, by Corollary 4.49.B, "Principle of Deformation," any integrals of the form $\int_{C} f(z) d z$, where C is a "sufficiently large" circle with negative orientation, will be equal. So the deformation of $\operatorname{Res}_{z=\infty} f(z)$ is unambiguous (that is, it is well-defined).

Note. The reason for giving C_{0} a negative orientation in the definition of $\operatorname{Res}_{z=\infty} f(z)$ is to give a consistence with the properties of $\operatorname{Res}_{z=z_{0}} f(z)$ for finite z_{0}. For finite z_{0}, we considered positively oriented simple closed contour C and has $\operatorname{Res}_{z=z_{0}} f(z)=$ $\frac{1}{2 \pi i} \int_{C} f(z) d z$ (see Note 69.A). In this case, as we "travel" along C, the singular points are always to our left. By giving C_{0} a negative orientation we always have ∞ on our left.

Note. We use $\operatorname{Res}_{z=\infty} f(z)$ in the proof of the following.

Theorem 6.71.1. If a function f is analytic everywhere in the finite plane except for a finite number of singular points interior to a positively oriented simple closed contour C, then

$$
\int_{C} f(z) d z=2 \pi i \operatorname{Res}_{z=0}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right)
$$

Example. Consider $\int_{C} \frac{5 z-1}{z(z-1)} d z$ where C is the circle $|z|=2$ positively oriented. We worked this example in the previous section by considering two Laurent series for the integrand f. We can now use Theorem 6.71.1 and evaluate it from a single Laurent series. We have

$$
\begin{gathered}
\frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\frac{1}{z^{2}} \frac{5 / z-2}{z^{2}(1 / z)((1 / z)-1)}=\frac{5-2 z}{z-z^{2}}=\frac{5-2 z}{z} \frac{1}{1-z}=\left(\frac{5}{z}-2\right) \sum_{n=0}^{\infty} \\
=5\left(\sum_{n=0}^{\infty} z^{n-1}\right)-2\left(\sum_{n=0}^{\infty} z^{n}\right) \text { for } 0<|z|<1
\end{gathered}
$$

(using a geometric series with ratio z where $|z|<1$ and the absolute convergence to
rearrange), and so with $n=0$ in the first series we see that $\operatorname{Res}_{z=0}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right)=5$. So by Theorem 6.71.1,

$$
\int_{C} \frac{5 z-2}{z(z-1)} d z=2 \pi i \operatorname{Res}_{z=0}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right)=2 \pi i(z)=10 \pi i .
$$

Note. Exercise 6.71.5 states:
Suppose that a function f is analytic throughout the finite plane except for a finite number of singular points $z_{1}, z_{2}, \ldots, z_{n}$. Show that

$$
\operatorname{Res}_{z=z_{1}} f(z)+\operatorname{Res}_{z=z_{1}} f(z)+\cdots+\operatorname{Res}_{z=z_{n}} f(z)+\operatorname{Res}_{z=\infty} f(z)=0 .
$$

So $\operatorname{Res}_{z=z_{1}} f(z)+\operatorname{Res}_{z=z_{1}} f(z)+\cdots+\operatorname{Res}_{z=z_{n}} f(z)=-\operatorname{Res}_{z=\infty} f(z)$. This is why we can evaluate integrals by considering a single residue at infinity instead of the individual residues. In the proof of Theorem 6.71.1, we see that

$$
\operatorname{Res}_{z=\infty} f(z)=\operatorname{Res}_{z=0}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right)
$$

Note. We have seen that residues are useful in calculating integrals. But at this stage we must find a Laurent series in order to find a residue. We'll have an easier way soon to evaluate residues in certain cases (see Section 73, "Residues at Poles").

