Section 6.72. The Three Types of Isolated Singular Points

Note. In this section we use the Laurent series of a function centered at an isolated singular point to classify the singular point into one of three categories.

Definition. If for function f there is $R_{1}>0$ such that f is analytic for $R_{1}<|z|<$ ∞ then f has an isolated singularity point at $z_{0}=\infty$.

Note. Suppose f has an isolated singular point at z_{0}; that is, f is analytic for $0<\left|z-z_{0}\right|<R_{2}$ but f is not analytic at z_{0}, then by Theorem 5.60.1, "Laurent's Theorem,"

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n} \text { for } 0<\left|z-z_{0}\right|<R_{2} .
$$

Definition. Let f have an isolated singular point at $z=z_{0}$ and let

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} a_{z}\left(z-z_{0}\right)^{n}+\frac{b_{1}}{z-z_{0}}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\cdots+\frac{b_{m}}{\left(z-z_{0}\right)^{m}}
$$

for $0<\left|z-z_{0}\right|<R_{2}$ (that is, $c_{0}=0$ for $n<-m$). Then z_{0} is a pole of order m for f. If z_{0} is a pole of oder 1 then it is a simple pole of f.

Definition. Let f have an isolated singular point at $z=z_{0}$ and let

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} a_{z}\left(z-z_{0}\right)^{n} \text { for } 0<\left|z-z_{0}\right|<R_{2}
$$

(that is, $c_{n}=0$ for $n<0$). Then z_{0} is a removable singular point of f.

Note 6.72.A. If f has a removable singular point at z_{0} then we can define $g(z)$ on $\left|z-z_{0}\right|<R_{2}$ as

$$
g(z)=\left\{\begin{array}{cl}
f(z) & \text { for } 0<\left|z-z_{0}\right|<R_{2} \\
z_{0} & \text { for } z=z_{0} .
\end{array}\right.
$$

Then $g(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and so g is analytic on $\left|z-z_{0}\right|<R_{2}$. Notice that this means $\lim _{z \rightarrow z_{0}} f(z)=\lim _{z \rightarrow z_{0}} g(z)=g\left(z_{0}\right)$. In this way, the singularity of f at $z=z_{0}$ has been "removed." An example of this is given by the functions $f(z)=\left(z^{2}-1\right) /(z-1)$ and $g(z)=z+1$.

Definition. Let f have an isolated singular point at $z=z_{0}$. If z_{0} is neither a removable singular point nor a pole then z_{0} is an essential singular point.

Note. If f has an essential singular point at $z=z_{0}$ then the Laurent series $f(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ for $0<\left|z-z_{0}\right|<R_{2}$ must have infinitely many nonzero c_{n} for $n<0$.

Example. (Exercise 6.72.1(c)) Consider $f(z)=(\sin z) / z$. Since $\sin z=\left(e^{-z}-\right.$ $\left.e^{-i z}\right) / 2$ (see Section 3.34, "Trigonometric Functions") we have

$$
\sin z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!} \text { for all } z \in \mathbb{C}
$$

and so

$$
\frac{\sin z}{z}=\frac{1}{z} \sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n+1)!} \text { for } 0<|z|<\infty
$$

and so $(\sin z) / z$ has a removable singularity at $z=0$. Notice

$$
\lim _{z \rightarrow 0} \frac{\sin z}{z}=\lim _{z \rightarrow 0}\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n+1)!}\right)=\frac{(-1)^{0}}{(2(0)+1)!}=1 .
$$

Example 3. Consider $f(z)=\frac{\sinh z}{z^{4}}$. Since $\sinh z=\left(e^{z}-z^{-z}\right) / 2$ (see Section 3.35, "Hyperbolic Functions") we have $\sinh z=\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!}$ for all $z \in \mathbb{C}$ and so

$$
\begin{gathered}
\frac{\sinh z}{z^{4}}=\frac{1}{z^{4}} \sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{z^{2 n-3}}{(2 n+1)!} \\
=\frac{1}{z^{3}}+\frac{1}{6 z}+\sum_{n=2}^{\infty} \frac{z^{2 n-3}}{(2 n+1)!}=\frac{1}{z^{3}}+\frac{1}{6 z}+\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+5)!}
\end{gathered}
$$

and so f has a pole of order $m=3$ at $z_{0}=0$.

Example 5. Consider $f(z)=\exp (1 / z)$. Since $\exp (z)=\sum_{n=0}^{\infty} z^{n} / n$! for all $z \in \mathbb{C}$ then

$$
\exp (1 / z)=\sum_{n=0}^{\infty} \frac{(1 / z)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{1}{z^{n} n!}=1+\frac{1}{1!z}+\frac{1}{2!z^{2}}+\frac{1}{3!z^{3}}+\cdots \text { for } 0<|z|<\infty
$$

and so f has an essential singularity at $z_{0}=0$.

Note. Brown and Churchill now mention (without a formal statement) "Picard's Theorem." This claims that if f has an essential singularity at $z=z_{0}$ then for all $\varepsilon>0$ such that f is analytic on $0<\left|z-z_{0}\right|<\varepsilon$, function f assumes every value $c \in \mathbb{C}$ an infinite number of times, with one possible exception for the value c (for $f(z)=\exp (1 / z)$ the exceptional value is $c=0$). For details, see Section XII.1,
"The Great Picard Theorem in John Conway's Functions of One Complex Variable I, 2nd Edition [Springer-Verlag, 1978]. This is the last section of this graduate-level text, reflecting the background needed to prove the result.

