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Section 6.72. The Three Types of Isolated Singular Points

Note. In this section we use the Laurent series of a function centered at an isolated

singular point to classify the singular point into one of three categories.

Definition. If for function f there is R1 > 0 such that f is analytic for R1 < |z| <

∞ then f has an isolated singularity point at z0 = ∞.

Note. Suppose f has an isolated singular point at z0; that is, f is analytic for

0 < |z − z0| < R2 but f is not analytic at z0, then by Theorem 5.60.1, “Laurent’s

Theorem,”

f(z) =

∞
∑

n=−∞

cn(z − z0)
n for 0 < |z − z0| < R2.

Definition. Let f have an isolated singular point at z = z0 and let

f(z) =

∞
∑

n=−∞

cn(z − z0)
n =

∞
∑

n=0

az(z − z0)
n +

b1

z − z0

+
b2

(z − z0)2
+ · · · +

bm

(z − z0)m

for 0 < |z − z0| < R2 (that is, c0 = 0for n < −m). Then z0 is a pole of order m for

f . If z0 is a pole of oder 1 then it is a simple pole of f .

Definition. Let f have an isolated singular point at z = z0 and let

f(z) =

∞
∑

n=−∞

cn(z − z0)
n =

∞
∑

n=0

az(z − z0)
n for 0 < |z − z0| < R2

(that is, cn = 0 for n < 0). Then z0 is a removable singular point of f .
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Note 6.72.A. If f has a removable singular point at z0 then we can define g(z) on

|z − z0| < R2 as

g(z) =







f(z) for 0 < |z − z0| < R2

z0 for z = z0.

Then g(z) =
∑∞

n=0
an(z − z0)

n and so g is analytic on |z − z0| < R2. Notice that

this means limz→z0
f(z) = limz→z0

g(z) = g(z0). In this way, the singularity of

f at z = z0 has been “removed.” An example of this is given by the functions

f(z) = (z2 − 1)/(z − 1) and g(z) = z + 1.

Definition. Let f have an isolated singular point at z = z0. If z0 is neither a

removable singular point nor a pole then z0 is an essential singular point.

Note. If f has an essential singular point at z = z0 then the Laurent series

f(z) =
∑∞

n=−∞ cn(z− z0)
n for 0 < |z− z0| < R2 must have infinitely many nonzero

cn for n < 0.

Example. (Exercise 6.72.1(c)) Consider f(z) = (sin z)/z. Since sin z = (e−z −

e−iz)/2 (see Section 3.34, “Trigonometric Functions”) we have

sin z =

∞
∑

n=0

(−1)n
z2n+1

(2n + 1)!
for all z ∈ C

and so

sin z

z
=

1

z

∞
∑

n=0

(−1)n
z2n+1

(2n + 1)!
=

∞
∑

n=0

(−1)n
z2n

(2n + 1)!
for 0 < |z| < ∞
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and so (sin z)/z has a removable singularity at z = 0. Notice

lim
z→0

sin z

z
= lim

z→0

(

∞
∑

n=0

(−1)n
z2n

(2n + 1)!

)

=
(−1)0

(2(0) + 1)!
= 1.

Example 3. Consider f(z) =
sinh z

z4
. Since sinh z = (ez−z−z)/2 (see Section 3.35,

“Hyperbolic Functions”) we have sinh z =
∞
∑

n=0

z2n+1

(2n + 1)!
for all z ∈ C and so

sinh z

z4
=

1

z4

∞
∑

n=0

z2n+1

(2n + 1)!
=

∞
∑

n=0

z2n−3

(2n + 1)!

=
1

z3
+

1

6z
+

∞
∑

n=2

z2n−3

(2n + 1)!
=

1

z3
+

1

6z
+

∞
∑

n=0

z2n+1

(2n + 5)!

and so f has a pole of order m = 3 at z0 = 0.

Example 5. Consider f(z) = exp(1/z). Since exp(z) =
∑∞

n=0
zn/n! for all z ∈ C

then

exp(1/z) =

∞
∑

n=0

(1/z)n

n!
=

∞
∑

n=0

1

znn!
= 1 +

1

1!z
+

1

2!z2
+

1

3!z3
+ · · · for 0 < |z| < ∞

and so f has an essential singularity at z0 = 0.

Note. Brown and Churchill now mention (without a formal statement) “Picard’s

Theorem.” This claims that if f has an essential singularity at z = z0 then for

all ε > 0 such that f is analytic on 0 < |z − z0| < ε, function f assumes every

value c ∈ C an infinite number of times, with one possible exception for the value c

(for f(z) = exp(1/z) the exceptional value is c = 0). For details, see Section XII.1,
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“The Great Picard Theorem in John Conway’s Functions of One Complex Variable

I, 2nd Edition [Springer-Verlag, 1978]. This is the last section of this graduate-level

text, reflecting the background needed to prove the result.
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