Section 6.74. Examples

Note. We now illustrate Theorem 6.73 .1 with several examples.

Example 6.74.1. Consider $f(z)=\frac{z+1}{z^{2}+9}=\frac{z+1}{(z+3 i)(z-3 i)}$. Then f has isolated singular points at $z=-3 i$ and $z=3 i$. For $z=-3 i$ we have, in the notation of Theorem 6.73 .1 (notice $m=1$ and $3 i$ is a simple pole), $f(z)=\frac{(z+1)(z-3 i)}{z+3 i}=$ $\frac{\varphi(z)}{z+3 i}$. So

$$
\operatorname{Res}_{z=-3 i} f(z)=\varphi(-3 i)=\frac{(-3 i)+1)}{(-3 i)-3 i}=\frac{-3 i+1}{-6 i}=\frac{3+i}{6} .
$$

Similarly, for $z=3 i, f(z)=\frac{(z+1) /(z+3 i)}{z-3 i}=\frac{\varphi(z)}{z-3 i}$ and

$$
\operatorname{Res}_{z=3 i} f(z)=\varphi(3 i)=\frac{(3 i)+1)}{(3 i)+3 i}=\frac{3 i+1}{6 i}=\frac{3-i}{6} .
$$

Example 6.74.3. Consider $f(z)=\frac{(\log z)^{3}}{z^{2}+1}$ where we use the branch of the logarithm $\log z=\ln r+i \theta$, where $r>0$ and $0<\theta<2 \pi$. At singular point $z=i$ we have $f(z)=\frac{(\log z)^{3} /(z+i)}{z-i}=\frac{\varphi(z)}{z-i}$ (notice that φ is analytic at $z=i$ and $\varphi(i) \neq 0)$ and so

$$
\operatorname{Res}_{z=i} f(z)=\varphi(i)=\frac{(\log (i))^{3}}{(i)+i}=\frac{(\pi i / 2)^{3}}{2 i}=\frac{-\pi^{3}}{16} .
$$

Similarly, at $z=i$,

$$
\operatorname{Res}_{z=-i} f(z)=\frac{(\log (-i))^{3}}{(-i)-i}=\frac{(3 \pi i / 2)^{3}}{-2 i}=\frac{27 \pi^{3}}{16}
$$

Example 6.74.5. Consider $f(z)=\frac{1}{z\left(e^{z}-1\right)}$. Then f has an isolated singular point at $z=0$. Now $e^{z}=\sum_{n=0}^{\infty} z^{n} / n$! so, by the absolute convergence of this series for $|z|<\infty$ (see Section 5.67),
$z\left(e^{z}-1\right)=z\left(\sum_{n=0}^{\infty} \frac{z^{n}}{n!}-1\right)=z\left(\sum_{n=1}^{\infty} \frac{z^{n}}{z!}\right)=z^{2}\left(\sum_{n=1}^{\infty} \frac{z^{n-1}}{n!}\right)=z^{2}\left(\sum_{n=0}^{\infty} \frac{z^{n}}{(n+1)!}\right)$.
So

$$
f(z)=\frac{1}{z\left(e^{z}-1\right)}=\frac{1}{z^{2}}\left(\frac{1}{\sum_{n=0}^{\infty} z^{n} /(n+1)!}\right)=\frac{\varphi(z)}{z^{2}}
$$

where $\varphi(z)=1 / \sum_{n=0}^{\infty} z^{n} /(n+1)$!. So φ is analytic and nonzero at $z=0$. Therefore, by Theorem 6.73.1, f has a pole of order 2 at $z=0$ and

$$
\operatorname{Res}_{z=0} f(z)=\frac{\varphi^{(2-1)}(0)}{(2-1)!}=\varphi^{\prime}(0)=\left.\frac{-\sum_{n=1}^{\infty} n z^{n-1} /(n+1)!}{\left(\sum_{n=0}^{\infty} z^{n} /(n+1)!\right)^{2}}\right|_{z=0}=\frac{-1 / 2}{(1)^{2}}=\frac{-1}{2} .
$$

