Section 6.75. Zeros of Analytic Functions

Note. In this section we give the definition of a zero of "order" m of an analytic function and show (in Theorem 6.75.1) that it is similar to a zero of a polynomial of multiplicity of m.

Definition. Suppose f is analytic at z_{0}. If $f\left(z_{0}\right)=0$ and if there is $m \in \mathbb{N}$ such that $f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(m-1)}\left(z_{0}\right)=0$ and $f^{(m)}\left(z_{0}\right) \neq 0$, then f has a zero of order m at z_{0}.

Note. We now show that an analytic function can be factored much in the same way that the Factor Theorem allows us to factor polynomials.

Theorem 6.75.1. Let function f be analytic at z_{0}. It has a zero of order m at z_{0} if and only if there is a function g which is analytic and nonzero at z_{0} such that $f(z)=\left(z-z_{0}\right)^{m} g(z)$.

Example 6.75.2. Consider the entire function $f(z)=z\left(e^{z}-1\right)$ (which we also encountered in Example 6.74.5). Notice $f(0)=0, f^{\prime}(z)=[1]\left(e^{z}-1\right)+(z)\left[e^{z}\right]=$ $z e^{z}+e^{z}-1, f^{\prime}(0)=0, v^{\prime \prime}(z)=[1]\left(e^{z}\right)+(z)\left[e^{z}\right]+e^{z}=z e^{z}+2 e^{z}$, and $f^{\prime \prime}(0)=2$. So f has a zero of order $m=2$ at $z_{0}=0$. Hence by Theorem 6.75.1, $f(z)=z^{2} g(z)$
for entire g where $g(0) \neq 0$. In fact,

$$
g(z)=\left\{\begin{array}{cl}
\left(e^{z}-1\right) / z & \text { if } z \neq 0 \\
1 & \text { if } z=0
\end{array}\right.
$$

and $g(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+1)!}$ (see example 6.74.5).

Note. The previous theorem associates an order with a zero of an analytic function. The next result shows that the zeros of a nonzero analytic function are isolated.

Theorem 6.75.2. Given a function f and a point z_{0}, suppose that
(a) f is analytic at z_{0},
(b) $f\left(z_{0}\right)=0$ but f is not identically equal to zero in any neighborhood of z_{0}.

Then $f(z) \neq 0$ throughout some deleted neighborhood $0<\left|z-z_{0}\right|<\varepsilon$ of z_{0}.

Note. The following is somewhat of a converse of Theorem 6.75.2.

Theorem 6.75.3. Let f be a function and let z_{0} a point where
(a) f is analytic throughout a neighborhood N_{0} of z_{0} and with power series representation $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ for $z \in N_{0}$, and
(b) $f(z)=0$ at each point z of a domain D or a line segment L containing z_{0}.

Then $f(z) \equiv 0$ in N_{0}. That is, f is identically equal to zero throughout N_{0}.

