Section 6.76. Zeros and Poles

Note. We now relate the zeros of order m for an analytic function to the poles of order m in the reciprocal of the analytic function.

Theorem 6.76.1. Suppose that
(a) two functions p and q are analytic at a point z_{0}, and
(b) $p\left(z_{0}\right) \neq 0$ and q has a zero of order m at z_{0}.

Then the quotient $p(z) / q(z)$ has a pole of order m at z_{0}.

Example 6.76.1. Let $p(z)=1$ and $z(z)=z\left(e^{z}-1\right)$. Then p and q are entire and by Example 6.75.2, q has a zero of order $m=2$ at $z_{0}=0$. So by Theorem 6.76.a, $\frac{p(z)}{q(z)}=\frac{1}{z\left(e^{z}-1\right)}$ has a pole of order 2 at $z_{0}=0$ (as we saw in Example 6.74.5).

Theorem 6.76.2. Let the functions p and q be analytic at z_{0}. If $p\left(z_{0}\right) \neq 0$, $q\left(z_{0}\right)=0$, and $q^{\prime}\left(z_{0}\right)=0$ (that is, q has a zero of multiplicity one at z_{0}) then z_{0} is a simple pole of p / q and $\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}$.

Example 6.76.2. Consider $f(z)=\cos z / \sin z=\cot z$. With $p(z)=\cos z$ and $q(z)=\sin z$. Since $a(z)=\sin z=0$ for $z=n \pi$ where $n \in \mathbb{Z}, q^{\prime}(z)=\cos z$, $q^{\prime}(n \pi)=(-1)^{n} \neq 0$, and $p(n \pi)=(-1)^{n} \neq 0$ then by Theorem 6.76.2, f has a simple pole at each $n \pi$ where $n \in \mathbb{Z}$ and

$$
\operatorname{Res}_{z=n \pi} f(z)=\frac{p(n \pi)}{q^{\prime}(n \pi)}=\frac{(-1)^{n}}{(-1)^{n}}=1 .
$$

Example 6.76.4. Consider $f(z)=\frac{z}{z^{4}+4}$. Let $p(z)=z$ and $q(z)=z^{4}+4$. Then for $z_{0}=\sqrt{2} \exp (i \pi / 4)=1+i$ and $p\left(z_{0}\right)=z_{0} \neq 0, q\left(z_{0}\right)=0$, and $q^{\prime}\left(z_{0}\right)=4 z_{0}^{3} \neq 0$. So by Theorem 6.76.2, f has a simple pole at z_{0}, and the residue at z_{0} is

$$
\operatorname{Res}_{z=z_{0}} f(z)=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}=\frac{z_{0}}{4 z_{0}^{3}}=\frac{1}{4 z_{0}^{2}}=\frac{1}{4(2 \exp (i \pi / 2))}=\frac{1}{8 i}=\frac{-i}{8} .
$$

