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Section 114. Local Inverses

Note. In this section, we use the Inverse Function Theorem from advanced cal-

culus (or “Vector Calculus”) to find inverse functions (“locally”) of functions that

satisfy certain differentiation properties. The differentiation property is satisfied

by conformal mappings.

Note 114.A. Suppose f(z) is analytic at z0. Then f is analytic in some neigh-

borhood of z0. Let z0 = z0 + iy0 and f(z) = u(x, y) + iv(x, y). Then there is

a neighborhood of (x0, y0) throughout which u(x, y) and v(x, y) and their partial

derivatives of all orders are continuous (by, say, Theorem 5.57.A “Taylors Theo-

rem”). If we let u = u(x, y) and v = v(x, y) then we can interpret these functions

as mapping a region in the xy-plane into the uv-plane. Then the Jacobian of f is

J [f ] =

∣∣∣∣∣∣ ux uy

vx vy

∣∣∣∣∣∣ = uxvy − vxuy

= ux(ux)− vx(−vx) by the Cauchy-Riemann Equations

= (ux)
2 + (vx)

2 = |f ′(z)|2.

Note. To establish the main claim of this section, we need the Inverse Function

Theorem. A general version is given in my online notes for Vector Calculus (for-

merly, “Vector Analysis” [MATH 4317/5317]) on Section 3.5. The Implicit Function

Theorem. We do not need such a general case (which involves functions of n vari-

ables), so we state a special case involving functions of two variables.

https://faculty.etsu.edu/gardnerr/Vector-Calculus/Notes-Marsden-Tromba-6/Marsden-Tromba6-3-5.pdf
https://faculty.etsu.edu/gardnerr/Vector-Calculus/Notes-Marsden-Tromba-6/Marsden-Tromba6-3-5.pdf


114. Local Inverses 2

Theorem 114.A. Inverse Function Theorem.

Let U ⊂ R2 be an open set and let u : U → R, and let v : U → R have continuous

partial derivatives. Let f(x, y) = (u(x, y), v(x, y)) and let x0 = (x0, y0) ∈ U . If

J [f(x0)] 6= 0 then f(x0) = s0 can be solved uniquely as x = g(s) for x near x0

(i.e., for all x in some neighborhood of x0) and s near s0 (i.e., for all s in some

neighborhood of s0). Moreover, g has continuous partial derivatives.

Note 114.B. If f is a conformal mapping at z0 = x0+iy0 (that is, f ′(z0) 6= 0), then

the Jacobian of f at z0 is nonzero by Note 114.A: J [f(z0)] 6= 0. Also as observed

in Note 114.A, with f = u + iv, u and v have continuous partial derivatives (of all

orders, in fact). So by the Inverse Function Theorem (Theorem 114.A), there are

a pair of unique functions (the two components of function g in Theorem 114.A)

x = x(u, v) and y = y(u, v) defined on some neighborhood N of (u0, v0) which have

continuous partial derivatives, u0 = u(x0, y0) and v0 = v(x0, y0), and where

u = u(x, y) and v = v(x, y) implies x = x(u, v) and y = y(u, v).

With z = x+ iy, w = u+ iv, f(z) = u+ iv, and g(w) = x+ iy, these two equations

give

z = g(w) implies w = f(z).

So we have w = f(z) = f(g(w)) for w ∈ N . This is to be used in Exercise 114.8 to

show that g′(w) = 1/f ′(z) (once we know that g is analytic). With w = u+ iv and

w0 = u0 + iv0, and g(w) = x(u, v)+ iy(u, v), we consider the difference quotient for

(g(w0+∆w)−g(w0))/∆w. As shown in the proof of Theorem 2.21.A (“Differentiable
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Implies the Cauchy-Riemann Equations”),

lim
∆w→0

Re

(
g(w0 + ∆w)− g(w0)

∆w

)
= lim

∆u→0

x(u0 + ∆u, v0)− x(u0, v0)

∆x
= xu(u0, v0)

and

lim
∆w→0

Im

(
g(w0 + ∆w)− g(w0)

∆w

)
= lim

∆u→0

y(u0 + ∆u, v0)− y(u0, v0)

∆x
= yu(u0, v0),

provided these limits exist, which they do as we know from the Inverse Function

Theorem. These limits also hold for any point (u, v) in N , not just (u0, v0). Simi-

larly,

lim
∆w→0

Im

(
g(w0 + ∆w)− g(w0)

∆w

)
= yv(u0, v0)

and

lim
∆w→0

Im

(
g(w0 + ∆w)− g(w0)

∆w

)
= −xv(u0, v0).

So computing these limits gives us xu + iyu and yv − ixv; these will be shown to be

equal to each other and equal to g′(w) in Exercise 114.7 where it is to be shown

that g is analytic (using the equations in (5) below). Though we do not have

g′(w) = 1/f ′(z) for all w ∈ N , we can show that this relationship holds by taking

limits similar to above. We know that f is analytic, so we have f ′(z) = ux + ivx =

vy − iu + y. We can now conclude that

xu + iyu =
1

ux + ivx
=

ux − ivx

u2
x + v2

x

=
1

J
ux +

1

J
(−ivx)

and

yv − ixv =
1

vy − iuy
=

vy + iuy

v2
y + u2

y

=
1

J
vy +

1

J
(iuy)

(recall that the Cauchy-Riemann equations give, for analytic function f , ux = vy

and vx = −uy so that v2
y + u2

y = u2
x + v2

x). We now have xu = (1/J)ux = (1/J)vy,
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yu = (−1/J)vx, yv = (1/J)vy = (1/J)ux, and xv = (−1/J)uy. That is, we have

throughout N :

xu =
1

J
vy, xv = − 1

J
uy, yu = − 1

J
vx, yv =

1

J
ux. (5)

Note. The function z = g(w) is the local inverse of w = f(z) on neighborhood N .

In conclusion, we have:

Theorem 114.B. If w = f(z) is analytic and conformal at z0 then there is an

analytic function g defined on a neighborhood N of f(z0) such that f(g(w)) = w

for all w in N .

Example 114.1. Consider f(z) = ez. Since f ′(z) = ez, then f is conformal in all

of C. Consider z0 = 2πi. We have w0 = ez0 = e2πi = 1. The local inverse of f at

z0 is g(w) = log w = ln ρ + iϕ where w = ρ exp(iϕ) and we N as all such w with

ρ > 0 and π < ϕ < 3π (though other choices of N are possible; we cannot include

0 in N or take N as an annulus which “goes around” 0, or anything similar). A

different choice of z0 will potentially require a different choice of the values of ϕ in

the local inverse. Notice that g(1) = g(e2πi) = ln(1) + i(2π) = 2πi = z0. Also for

w = ρ exp(iϕ) where π < ϕ < 3π (i.e., w ∈ N) we have

f(g(w)) = exp(w) = exp(log z) = exp(ln ρ+iϕ) = exp(ln ρ) exp(iϕ) = ρ exp(iϕ) = w.

Also,

g′(w) =
d

dw
[log w] =

1

w
=

1

exp z
=

1

f(z)
,

as discussed above and to be shown in Exercise 114.8.
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