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Section 117. Transformations of Boundary Conditions

Note. In this section, we consider transformations of boundary conditions asso-

ciated with Dirichlet problems and Neumann problems. In the next chapter this,

combined with the results of Section 116. Transformations of Harmonic Functions,

will allow us to transform a given BVP in the xy plane to a (simpler) one in the

uv plane. We’ll then solve the simpler BVP and use it to “pull back” to a solution

of the original BVP.

Definition/Note 117.A. We need to review gradients and directional derivatives,

topics covered in Calculus 3 (MATH 2110); see my online notes for that class on

Section 14.5. Directional Derivatives and Gradient Vectors. For function f(x, y),

the gradient vector is the two dimensional vector ∇f = (∂f/∂x)i+(∂f/∂y)j. When

evaluated at a point P0, the gradient points in the direction of greatest increase of

the function f(x, y). The magnitude of the gradient at P0 reflects the steepness of

a tangent to the surface z = f(z, y) in the direction of the gradient. The directional

derivative of f(x, y) at point P0 in the direction of two dimensional unit vector u

is (df/ds)|u,P0
= (∇f)P0

· u. The value of this directional derivative gives the slope

of a tangent line to the surface z = f(x, y) in the direction u.

Theorem 117.A. Suppose that

(a) a transformation w = f(z) = u(x, y) + iv(x, y) is conformal at each point of a

smooth arc C and that Γ is the image of C under that transformation;
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(b) h(u, v) is a function that satisfies one of the conditions h = h0 and dh/dn = 0

at points on Γ, where h0 is a real constant and dh/dn denotes the directional

derivatives of h normal to Γ.

It follows that the function H(x, y) = h[(u(x, y), v(x, y)] satisfies the corresponding

condition H = h0 or dH/dN = 0 at points on C, where dH/dN denotes directional

derivatives of H normal to C.

Note 117.A. In the proof of Theorem 117.A, we assumed ∇h 6= 0. We now address

this case (thus adding the missing detail in the proof). In Exercise 9.117.10(a), it

is shown that ‖∇H(x, y)‖ = ‖∇h(u, v)‖|f ′(z)|. So for ∇h = 0, we have ∇H = 0.

So the directional derivatives dh/dn and dH/dN satisfy dh/dn = (∇h) ·n = 0 and

dH/dN = (∇H) · N = 0, as claimed in the conclusion of Theorem 117.A.

Note 117.B. Brown and Churchill have omitted some hypotheses from Theorem

117.A. They have assumed that (a) ∇h and ∇H always exist (since the direc-

tional derivatives require this), and (b) the level curve H(x, y) = c is smooth when

∇h 6= 0 at (u, v). The smoothness of curve H(x, y) = c implies that the partial

derivatives of H exist and are continuous (remember that “smooth” means contin-

uously differentiable; see my online notes for Calculus 2 [MATH 1920] on Section

6.3. Arc Length). So that for ∇h 6= 0 on C we have that ∇h exists and is nonzero

so that angles between curves (C and c, and Γ and c) are defined and preserved

by conformal mapping w = f(z). These extra conditions will be met in all the

applications we consider in Chapter 10.

https://faculty.etsu.edu/gardnerr/1920/12/c6s3.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c6s3.pdf


117. Transformations of Boundary Conditions 3

Example 117.A. To illustrate Theorem 117.A, consider h(u, v) = v + 2. Let

transformation w = f(z) = f(x + iy) be

w = iz2 = i(z + iy)2 = −2xy + i(x2 − y2)

is conformal when z 6= 0 (since f ′(z) = 2iz). Consider the half line y = x with

x > 0. Notice the principal argument of each complex number on the half line is

π/4. So f(z) = iz2 maps this half line to the negative u-axis (where the principal

argument of each complex number is π and this is coterminal with π/2 + 2(π/4)).

Since v = 0 on the u-axis, then h(u, v) = v + 2 takes on the value h = 2 on

the negative u-axis. In addition, the positive x-axis (where y = 0) is mapped by

w = f(z) to the positive v-axis (since w = ix2 where x > 0). On the positive v-axis

(where u = 0) we have the partial derivative hu = 0; that is, the normal derivative

of h on the positive v-axis is 0 (see Figure 152, right).

Since w = u + iv = −2xy + i(x2 − y2), then u(x, y) = −2xy and v(x, y) = x2 − y2.

With h(u, v) = v + 2, we have

H(x, y) = H(u(x, y), v(x, y)) = H(−2xy, x2 − y2) = (x2 − y2) + 2 = x2 − y2 + 2.

By Theorem 117.A, we must have H = 2 on the half line y = x where x > 0 (as is

confirmed by substitution) since this is mapped by f to the negative u-axis where
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h = 2. Also by Theorem 117.A, the normal derivative Hy must be 0 on the positive

x-axis (as is confirmed by differentiation and substitution) since this is mapped by

f to the positive v-axis and the normal derivative hu = 0 on the positive v-axis.

See Figure 152 again for these conditions.
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