## Chapter 3. Elementary Functions Study Guide

The following is a brief list of topics covered in Chapter 3 of Brown and Churchill's Complex Variables and Applications, 8th edition. This list is not meant to be comprehensive, but only gives a list of several important topics. You should also carefully study the examples and proofs given in class and in the homework problems.

## Section 3.29. The Exponential Function.

Multiplying exponentials (Lemma 3.29.A), dividing exponentials.

## Section 3.30. The Logarithm Function.

The "multiple-valued" function $\log z$, the principal value $\log z$, relationship between $\log z$ and $\log$ $z$.

## Section 3.31. Branches and Derivatives of Logarithms.

$\log z$ as an analytic function, branch of the logarithm, branch cut, branch point.

## Section 3.32. Some Identities Involving Logarithms.

Logarithm of a product (Lemma 3.32.A), logarithm of a quotient (Lemma 2.32.B), $z^{n}=e^{n \log z}$ (Lemma 3.32.C), $n$th roots in terms of logarithms (Lemma 3.32.D).

## Section 3.33. Complex Exponents.

Definition of $z^{c}$ where $c \in \mathbb{C}$, branch of $z^{c}$, principal branch of $z^{c}$, principal value of $z^{c}$, derivative of $z^{c}$ (Theorem 3.33.A), examples, exponential function base $c: c^{z}$.

## Section 3.34. Trigonometric Functions.

Definition of $\cos z$ and $\sin z$, derivatives of $\sin z$ and $\cos z$, addition formulas for $\sin$ and $\cos$, double angle formulas, cofunction relationship between $\sin z$ and $\cos z$, real and imaginary parts of $\sin z$ and $\cos z$ (Lemma 3.34.A), the modulus of $\sin z$ and $\cos z$ and the fact that these are unbounded functions, zeros of a function, roots of a polynomial, zeros of $\sin z$ and $\cos z$ (Lemma 3.34.B), definitions and derivatives of the other trigonometric functions.

## Section 3.35. Hyperbolic Functions.

Definition of $\cosh z$ and $\sinh z$, derivatives of $\cosh z$ and $\sinh z$ (Note 3.35.A), identities (Note 3.35.B), zeros of $\cosh z$ and $\sinh z$ (Note 3.35.C), definition and derivatives of the other hyperbolic trig functions.

## Section 3.36. Inverse Trigonometric and Hyperbolic Functions.

Definition of $\sin ^{-1} z$ as a "multiple-valued function," definitions of $\cos ^{-1} z$ and $\tan ^{-1} z$ as "multiplevalued functions," derivatives of inverse trig and inverse hyperbolic trig functions.

Revised: 1/15/2020

